
Page 1

SISCI Users Guide
Remote memory access made safe and easy

Dolphin Interconnect Solutions
07.08.2017
Version 5.5.0

SISCI API 2 – SISCI Users Guide - Page 2

SISCI API Users Guide

By Dolphin Interconnect Solutions.

Copyright © 2001 – 2017 Dolphin Interconnect Solutions

The goal of this guide is to introduce the reader to the SISCI API V2, which allows the development of

applications exploiting the powerful capabilities of remote memory access interconnects.

Legal Notice and Information

This manual may be reproduced in whole or part, without fee, subject to the following restrictions:

• The copyright notice above, and this permission notice, must be preserved completely on all complete

or partial copies.

• Any translation or derived work must be approved by the author in writing before redistribution.

• If you distribute this work in parts, instructions for obtaining the complete version of this manual must

be included, and any means for obtaining a complete version provided.

• Small portions may be reproduced as illustrations for reviews or quotes in other works without this

permission notice if proper citation is given. Exceptions to these rules may be granted for academic

purposes; please write to the author to ask for an exception. These restrictions are here to protect us as

authors, not to restrict you as learners and educators.

SISCI API 2 – SISCI Users Guide - Page 3

Contents
Introduction ... 6

The SISCI API .. 6

System security .. 6

Interoperability .. 6

Resources and resource dependencies ... 6

About this guide .. 7

Examples in this guide ... 8

Examples in the software distribution .. 9

System aspects .. 10

Initializing the SISCI environment.. 10

Virtual device handles ... 10

Querying information .. 11

Determining the SISCI API version ... 11

Determining the node identifier of a certain adapter ... 11

Probing a remote node.. 12

Memory segments... 13

Managing local segments .. 13

Allocating memory space .. 13

Deallocating a memory segment... 14

Making a segment available .. 14

Making a segment unavailable .. 15

A state machine for a local segment resource .. 15

Managing remote segments ... 16

Connecting to a remote segment .. 16

Disconnecting from a remote segment ... 17

Accessing memory ... 18

Mapping a local memory segment into addressable space .. 19

Mapping a remote memory segment into addressable space ... 20

Unmapping a mapped memory segment.. 21

Accessing data within mapped memory segments ... 22

Remote memory access example .. 22

DMA ... 27

SISCI API 2 – SISCI Users Guide - Page 4

Creating a DMA queue .. 27

Removing a DMA queue .. 27

DMA queues .. 28

Querying the state of a DMA queue ... 29

Starting a single DMA transfer .. 29

Starting multiple DMA transfers ... 30

Waiting for DMA completion .. 31

Aborting a DMA queue processing .. 32

Reusing a DMA queue ... 32

DMA example .. 32

Interrupts ... 37

Managing local interrupts ... 37

Allocating an interrupt .. 37

Deallocating an interrupt .. 38

Waiting for an interrupt .. 38

Managing remote interrupts ... 38

Connecting to an interrupt .. 38

Disconnecting from an interrupt ... 39

Triggering an interrupt .. 39

Interrupt example ... 39

Advanced features... 42

Error checking .. 42

Sequences .. 42

Flushing buffers ... 43

Checking for data transfer errors .. 43

Events and callbacks .. 46

Local segment events .. 46

Local segment synchronous event handling ... 47

Local segment asynchronous event handling ... 48

Remote segment events .. 49

Asynchronous connection ... 49

Remote segment synchronous event handling ... 50

Remote segment asynchronous event handling ... 51

A state machine for a remote segment ... 52

SISCI API 2 – SISCI Users Guide - Page 5

DMA and callbacks .. 53

Interrupts and callbacks .. 53

Reflective memory – Multicast ... 54

More information on multicast ... 55

Peer to peer transfers ... 55

More information on peer to peer transfers .. 55

Privileged functions ... 56

Registering physical memory as a segment .. 56

Querying the remote address of a mapped SISCI segment .. 56

How to write optimized SISCI code ... 57

SISCI API changes ... 58

Hardware dependent features .. 58

SISCI API versions .. 58

Availability ... 59

Supported operating systems ... 59

Support for 3rd party OEM hardware .. 59

More information .. 60

SISCI API 2 – SISCI Users Guide - Page 6

Introduction
The powerful functionality offered by memory mapped interconnect hardware is well suited to implement low

latency, high-performance distributed solutions. Writing the required device drivers and control software to

initialize and manage memory mapped interconnects from scratch is a significant job and requires significant

system and interconnect hardware experience and knowledge.

The goal of the SISCI API is to create a portable software stack, which by design does not add significant

overhead to data transfer operations, and significantly simplifies the use of advanced remote memory access

networks.

For an application developer, the SISCI API represents a rich interface to memory mapped hardware and lower-

level software services.

The SISCI API
The SISCI API was one of the main outcomes of the EU-funded Esprit Project 23174, “Standard Software

Infrastructures for SCI-based Parallel Systems”, whose purpose was to encourage the development of software

support for parallel processing on clusters of PCs or workstations connected with a fast “memory mapped”

interconnect, initially for the SCI (Scalable Coherent Interface).

The SISCI API supports data transfers based either on distributed remote memory access or on Direct Memory

Access (DMA). It also allows users to trigger remote interrupts and to catch and handle events generated by the

underlying interconnect system (such as a network cable being unplugged). Data transfers can be between

system memories and IO devices connected by the underlying memory mapped interconnect. The SISCI API has

proven portable and very valuable for a number of various types of memory mapped interconnect solutions like

SCI, ASI, and PCI Express.

The SISCI API is currently available for the following interconnects from Dolphin and OEM partners:

• SCI (initially with a SBus and PCI interface)

• DX (Based on ASI / StarGen PCI Express Gen1)

• IX (Based on IDT PCI Express Gen2 chips)

• PX (Based on PLX/Avago/Broadcom PCI Express Gen2 and Gen3 chips)

• INX (Intel NTB enabled server systems)

• MX (Based on Microsemi Switchtec chips)

• Various OEM solutions based on standard PCIe chipsets from IDT, Microsemi and PLX

System security
The regular SISCI API functionality and implementation are designed to create an easy to use and safe

environment. The functionality is implemented in close interaction with standard IOMMU functionality and

lower level drivers to prevent malfunctioning software (e.g. software bugs) from accessing remote memory

outside of exported SISCI segments. This is also true after hot-plug events and system reboots, even if the

customer application software is not designed to fully support such events.

Interoperability
The SISCI API is designed to be system architecture and operating system independent, allowing users to write

portable applications that communicate across systems without adding overhead or performance penalties.

The SISCI API supports connecting both little and big-endian systems – the interpretation of data in bi-endian

systems is up to the application programmer.

Resources and resource dependencies
The SISCI API makes extensive use of the "resource" concept: a virtual device is a resource, a memory segment

is a resource, a DMA queue is a resource, and so on. The list of available resources will become clear going

through this guide.

A resource is usually associated with a number of properties, which are collected in a descriptor. The contents of

a descriptor, i.e. the resource properties, are not directly visible to a user, who needs to use appropriate API

SISCI API 2 – SISCI Users Guide - Page 7

functions to manage them. In other words, a descriptor is opaque to a user. A descriptor handle is provided to the

user, which is passed to the API functions.

Names of descriptors and handles are chosen after the resource name. For a local segment, for instance, the

descriptor is called sci_local_segment, and the handle is called sci_local_segment_t.

Resources may depend on other resources. For example, the function that creates a local segment needs a

reference to an open virtual device, meaning that a local segment depends on a virtual device.

The dependency implies that a resource should not be freed if there is another one relying on it; doing so would

generate an error. Using the example above, a virtual device cannot be closed until all the local segments

associated to it are released.

About this guide
This document will guide you through the fundamental features of the SISCI API V2. At the end, you will be

able to manage memory segments, transfer data from one node to another several different ways, and send

interrupts remote processes.

We will start with addressing some generic aspects such as initializing the SISCI API library and querying

information about the interconnect fabric. This is presented in the “System aspects” chapter starting on page

10.

You will learn basic memory management in the “Memory segments” chapter starting on page 13. This

includes how to allocate memory segments, how to make them available to other nodes, and how to connect to a

remote memory segment. When you have completed the basic memory management section, you will be ready

to perform data transfers between several nodes.

Data transfer methods are described in the “Accessing memory” chapter starting on page 18 and in the “

/* receiver program */

#include "sisci_error.h"

#include "sisci_api.h"

#include <stdio.h>

#define RECEIVER_SEG_ID 4

#define RECEIVER_SEG_SIZE 4096

#define ADAPTER_NO 0

#define NO_CALLBACK 0

#define NO_ARG 0

#define NO_FLAGS 0

#define PRINT_COMMAND 1

int

main(int argc, char* argv[])

{

sci_desc_t v_dev;

sci_error_t error;

sci_local_segment_t local_segment;

sci_map_t local_map;

int* local_address;

/* initialize the SCI environment */

SCIInitialize(NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* create a virtual device */

SCIOpen(&v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* allocate a local segment */

SCICreateSegment(v_dev, &local_segment,

RECEIVER_SEG_ID, RECEIVER_SEG_SIZE,

NO_CALLBACK, NO_ARG, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SISCI API 2 – SISCI Users Guide - Page 8

SciPrepareSegment(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* map the local segment */

local_address = (int*)SCIMapLocalSegment(local_segment, &local_map,

0 /* offset */, RECEIVER_SEG_SIZE, 0 /* address hint */, NO_FLAGS,

&error);

if (error != SCI_ERR_OK) return 1;

/* initialise the first word of the to-be- accessed segment */

 *local_address = ~PRINT_COMMAND;

/* export local segment */

SCISetSegmentAvailable(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* wait for the sender process to send the print command */

while (*l_addr != PRINT_COMMAND) ;

printf("Hello, World!\n");

/* cleanup */

SCISetSegmentUnavailable(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIUnmapSegment(local_map, NO_FLAGS, &error)

if (error != SCI_ERR_OK) return 1;

SCIRemoveSegment(local_segment, NO_FLAGS, error);

if (error != SCI_ERR_OK) return 1;

SCIClose(v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCITerminate();

return 0;

}

DMA” chapter starting on page 25.

A memory mapped interconnect system may contain several nodes sharing a global memory structure. Interrupts

may be used for synchronization. Interrupts are a fast way of notifying another node that something has occurred

and you will learn how to use them in the “Interrupts” chapter starting on page 37.

Finally, the “Advanced ” chapter starting on page 42, deals with things like managing events and checking for

data transfer errors.

We recommend keeping the SISCI API Functional Specification at hand when reading this guide. In particular,

the specification will be useful as a reference for function prototypes and for the list of possible errors generated

by a function call.

This guide is covering the functionality available with SISCI API version 2.

This guide, the SISCI API Functional Specification, and other documentation and software distributions are

available from http://www.dolphinics.com/.

Examples in this guide
The textual explanations are enriched by C code excerpts to show how things are used in practice; from time to

time, whole programs implementing a send-receive example are included in order to summarize the concepts

explained so far (such programs are supposed to correctly compile and run). The choice of a send-receive pattern

for the examples is motivated by its simplicity, the interconnect hardware and software of course allow you to do

much more than that.

A program making use of the SISCI API library must include the header files sisci_api.h and

sisci_error.h. For simplicity, this is done only in the full programs but not in code excerpts. Please refer to

http://www.dolphinics.com/

SISCI API 2 – SISCI Users Guide - Page 9

the documentation that comes with the software distribution to find out where this header file is located and for

additional information on how to compile and link SISCI applications.

Applications that want to make use of “callbacks” (more on this later in this guide) must be compiled using the

D_REENTRANT compiler flag.

Even if they are not part of the API, many examples that you find both in this guide and the software distribution

make use of the following constants:

#define NO_FLAGS 0

#define NO_CALLBACK 0

#define NO_ARG 0

We also assume that the following identifiers are defined. Their values are not important but must be legal:

• ADAPTER_NO is the identifier of the interconnect adapter card. This guide assumes there is only one

card present on each system, and that the identifier is the same on all systems. A system can have

several adapters, each identified with a host-wide unique adapter number.

• SENDER_NODE_ID and RECEIVER_NODE_ID are the SISCI node identifiers of the two nodes involved

in the example code. Each node connected to the network is assigned a unique node identifier.

• SENDER_SEG_ID and RECEIVER_SEG_ID are the identifiers (segment IDs) of the SISCI memory

segments created on the two nodes of the example code. The sizes (in bytes) of the two segments are

SENDER_SEG_SIZE and RECEIVER_SEG_SIZE respectively.

Examples in the software distribution
The SISCI software is normally distributed with a number of SISCI tests, benchmarks and example programs.

SISCI programmers are encouraged to study these examples and play with the benchmark tools to learn more

about the SISIC API and the power of remote memory accesses.

SISCI API 2 – SISCI Users Guide - Page 10

System aspects
This chapter address some generic aspects of the SISCI API related to the initialization of the SISCI program

environment and to the retrieval of information about the underlying interconnect system.

In particular, you will learn:

• How to initialize the SISCI API library.

• How to manage the so-called “virtual devices”.

• How to get useful information about the underlying network system.

• How to check if a remote node is on-line.

Initializing the SISCI environment
Before calling any other function in the SISCI API one should initialize the library calling SCIInitialize():

sci_error_t error;

SCIInitialize(NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* successful initialization */

} else {

/* manage error */

}

/* go on with the program */

If SCIInitialize() fails, there is something fundamentally wrong with the local software or hardware

installation. One typical problem is that the SISCI API library and driver versions are not consistent, in which

case the error is SCI_ERR_INCONSISTENT_VERSIONS.

Before exiting, but after any SISCI API call, the program should call SCITerminate() to properly release all

SISCI resources:

/* no SISCI API calls here */

SCIInitialize(...);

/* SISCI program functionality goes here */

SCITerminate();

/* no SISCI API calls here */

Both SCIInitialize()and SCITerminate()should only be called once in your program, independently of

how many SISCI resources you use.

Virtual device handles
Most SISCI API functionality is managed through virtual device handles. A virtual device handle can be seen as

a communication channel with the underlying SISCI driver.

NB: Each virtual device can only hold one of each resource. E.g., you would need two virtual devices to

manage two segments, but only one virtual device to manage one interrupt and one segment.

A virtual device is created with SCIOpen()and removed with SCIClose():

sci_desc_t v_dev;

sci_error_t error;

SCIInitialize(...);

SCIOpen(&v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) {

/* manage error */

}

SISCI API 2 – SISCI Users Guide - Page 11

/* use v_dev */

SCIClose(v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) {

/* manage error */

}

SCITerminate();

A typical error in case of failure of SCIOpen()is SCI_ERR_NOT_INITIALIZED, which means that you forgot to

call SCIInitialize()before SCIOpen().

Querying information
The SISCI API provides a way to retrieve some information about the underlying interconnect system. In

particular, you can retrieve information about the vendor identifier, the version of the API implemented, and

some adapter characteristics. Other information, both general and vendor-dependent, can also be provided. Refer

to the SISCI API specification for further query options.

The function used to query the above mentioned information is SCIQuery(). This function has a query

command as input and returns the requested information. Additional input information, like subcommands, is

passed in the same data structure used for the output. The following two sections show how to get the API

version and the node identifier associated with a certain adapter. The procedure to access other information is

similar; please refer to the SISCI API specification for the details.

Determining the SISCI API version
The SCIQuery() call is in this case quite simple. The first parameter specifies the query type, which in this

case is SCI_Q_API. Results are stored in the sci_query_string structure, referenced in the second

parameter. This structure contains a pointer to an already allocated character array and an integer representing

the size of the array.

const unsigned int QUERY_STRING_LENGTH = 64;

char api_version[QUERY_STRING_LENGTH];

sci_query_string_t query;

sci_error_t error;

query.str = api_version;

query.length = QUERY_STRING_LENGTH;

SCIQuery(SCI_Q_API, &query, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* api_version contains the requested value */

} else {

/* manage error */

}

Determining the node identifier of a certain adapter
SCIQuery()requires additional parameters to get the proper information for a certain adapter: a subcommand

specifying the query type and the adapter identifier. The additional information is passed through the

sci_query_adapter structure, which also contains an integer field for the output.

unsigned int local_node_id;

sci_query_adapter_t query;

sci_error_t error;

query.subcommand = SCI_Q_ADAPTER_NODE_ID;

query.localAdapterNo = ADAPTER_NO;

query.data = &local_node_id;

SCIQuery(SCI_Q_ADAPTER, &query, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* local_node_id contains the requested value */

} else {

SISCI API 2 – SISCI Users Guide - Page 12

/* manage error */

}

Probing a remote node
The SISCI API function SCIProbeNode() can be used to check if communication is possible to a certain

remote node through a certain local adapter:

sci_desc_t v_dev;

sci_error_t error;

int reachable;

SCIInitialize(...);

SCIOpen(&v_dev, ...);

reachable = SCIProbeNode(v_dev, ADAPTER_NO, REMOTE_NODE_ID,

NO_FLAGS, &error);

if (reachable == 1) {

/* node is reachable */

} else { /* error != SCI_ERR_OK */

/* manage the error */

}

If the function fails, typical errors are:

SCI_ERR_NO_LINK_ACCESS

There are problems with the local adapter or cable.

SCI_ERR_NODE_NOT_RESPONDING

There are problems with the remote adapter.

SCI_ERR_NO_SUCH_NODEID

There is no reachable node with the specified identifier on the network accessible through the specified

adapter.

SISCI API 2 – SISCI Users Guide - Page 13

Memory segments
The ability to safely access memory physically resident on another machine is the fundamental characteristic and

the strength of the SISCI technology. If the remote memory is mapped in the addressable space of a local

process, thus appearing as if it were local, a data transfer is as simple as a normal memcpy(). Memcpy() is

typically implemented as a sequence of CPU instructions that will use CPU load or store instructions to send or

fetch data from remote memory. This transfer method is known as Programmed I/O (PIO). Alternately, the

SISCI Application programmer can use the Direct Memory Access (DMA) approach, whereby the CPU simply

gives instructions to the network interface DMA controller about the transfer (for example, source address,

destination address and size), which makes it free to do other things in parallel with the data transfer.

Both cases require a way to manage local memory segments on one side and a way to attach to remote memory

segments on the other side.

In this chapter, you will learn:

• How to allocate a memory segment on the local node.

• How to make a local segment available to other nodes.

• How to connect to a memory segment available on a remote node.

Managing local segments

Allocating memory space
The allocation of a segment on the local host is done with the function SCICreateSegment(). The main reason

to have a special function for the allocation instead of a normal malloc()-like call is that the driver must be

aware of the created segment and associated parameters. Moreover, most operating systems require that memory

used in the way SISCI uses it has specific characteristics, such as being non-swappable and/or being physically

contiguous. Different hardware implementations may have different requirements; using SCICreateSegment()

ensures the implementation details can be hidden from the user, and ensures portability.

A typical usage of SCICreateSegment()is as follows, assuming we are on the sender node:

sci_desc_t v_dev;

sci_local_segment_t local_segment;

sci_error_t error;

SCIInitialize(...);

SCIOpen(&v_dev,...);

SCICreateSegment(v_dev, /* virtual device */

&local_segment, /* handle to the allocated segment */

RECEIVER_SEG_ID, /* segment identifier */

RECEIVER_SEG_SIZE, /* size */

NO_CALLBACK, /* ignore this for the moment */

NO_ARG, /* callback arg, ignore */

NO_FLAGS,

&error);

if (error == SCI_ERR_OK) {

/* a segment is available for use */

} else {

/* manage error */

}

Let us look at the different parameters:

v_dev is the virtual device, as it comes from the SCIOpen() call shown previously.

local_segment is a handle to the memory segment to be allocated. It will be initialized if the call is

successful. The segment identifier, which in this case is the constant RECEIVER_SEG_ID, is an integer that

uniquely identifies the segment to the driver. A remote node that wants to use this segment needs to know the

value of this identifier. The driver checks the uniqueness of the identifier, so applications should choose

appropriate values. RECEIVER_SEG_SIZE is the size of the segment that will be allocated.

SISCI API 2 – SISCI Users Guide - Page 14

The specification of a callback allows triggering the execution of a certain function when something happens

concerning this segment. This option is covered later in the “Events and callbacks" chapter, starting on page

46.

As usual, error contains an error code, which, if representing failure, gives a hint about the cause. Typical

errors for such functions are the non-uniqueness of the segment identifier and the unavailability of free space.

Deallocating a memory segment
When a memory segment is no longer needed, for example, before quitting the application, it should be

destroyed in order to release unneeded resources.

The way to do it is via the function SCIRemoveSegment():

sci_error_t error;

sci_local_segment_t segment;

SCICreateSegment(..., &segment, ...); /* initialization */

/* use the segment */

SCIRemoveSegment(segment, NO_FLAGS, error);

if (error == SCI_ERR_OK) {

/* the resource is freed */

} else {

/* manage error */

}

SCIRemoveSegment() normally succeeds, if not, the SISCI driver will release left-over resources when the

application terminates. A typical cause of failure for this call is the dependency of other resources on this

segment. SCIRemoveSegment() succeeds even if there are remote processes still connected to the local

segment. In such a case, the segment is kept available only for the connected processes until they disconnect.

Making a segment available
Once a segment has been allocated, it needs to be made visible to local processes or the other nodes connected to

the network. This export operation is performed by calling two different functions in sequence.

The first one is SCIPrepareSegment(). Logically, its goal is to map the segment into the 64-bit network

address space shared by all the nodes in the network. What it does in practice is to make sure that the segment

can be correctly accessed by the specified network adapter. This includes guaranteeing the requirements possibly

set by the operating system, like non-swappability and physical contiguity.

The second step is performed by SCISetSegmentAvailable(), which makes the segment visible to the other

nodes via the specified adapter.

sci_error_t prepare_error;

sci_error_t avail_error;

sci_local_segment_t segment;

SCICreateSegment(..., &segment, ...); /* initialization */

SCIPrepareSegment(segment,

 ADAPTER_NO,

 NO_FLAGS,

 &prepare_error);

if (prepare_error == SCI_ERR_OK)

SCISetSegmentAvailable(segment,

 ADAPTER_NO,

 NO_FLAGS,

 &avail_error);

if (avail_error == SCI_ERR_OK) {

/* segment is now available to the remote nodes */

SISCI API 2 – SISCI Users Guide - Page 15

} else {

/* manage availability error */

}

} else {

/* manage preparation error */

}

As shown in the code above, the preparation and the availability of a memory segment are per adapter.

Typical errors for the two functions above are mainly related to problems with the specified adapter (for

example, it does not exist, or the segment specified in SCIPrepareSegment() doesn’t match with the one

specified in SCISetSegmentAvailable()).

Making a segment unavailable
SCISetSegmentUnavailable() changes the visibility of an exported segment, preventing new remote

connections through the specified adapter.

sci_local_segment segment;

unsigned int local_adapter = 0;

sci_error_t error;

SCICreateSegment(..., &segment, ...);

SCIPrepareSegment(segment, ...);

SCISetSegmentAvailable(segment, ...);

/* use the segment */

SCISetSegmentUnavailable(segment, ADAPTER_NO, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* the segment in not available for new remote connections */

} else {

/* manage error */

}

Calling SCISetSegmentUnavailable() doesn’t affect existing remote connections, as they are not aware of

the change. SCISetSegmentAvailable() could then be used, for example, to make a segment available only

to a certain number of remote nodes. It would work like this:

SCISetSegmentAvailable(segment, ...);

/* wait for n remote nodes to connect */

SCISetSegmentUnavailable(segment, ...);

We will see later that there are ways to determine when a remote node has connected.

A state machine for a local segment resource

Figure 1 - State machine for a local segment” below shows the life of a local segment.

Figure 1 - State machine for a local segment

Some additional comments:

SISCI API 2 – SISCI Users Guide - Page 16

• NOT PREPARED means that the segment has been allocated successfully but that is not yet prepared

to be used by a network adapter.

• SCIRemoveSegment() is a legal operation from any state. This does not mean that it will succeed

(e.g. it will not if there is a dependency on it).

• It is not possible to "un-prepare" a segment.

Managing remote segments
Imagine the following scenario: A process on the receiver node, with node id RECEIVER_NODE_ID, has

allocated and made a piece of memory available, with segment id equal to RECEIVER_SEG_ID.

The sender node has node id SENDER_NODE_ID. We would like to have a process that uses the memory segment

on the receiver node.

It is worth clarifying some nomenclature to better understand the next sections:

• A local segment is allocated on the receiver node.

• From the sender node perspective, the memory segment allocated on the receiver node is a remote

segment which is locally represented by a remote segment resource.

So a local segment and a local segment resource live on the same node, whereas a remote segment and a remote

segment resource live on different nodes.

Connecting to a remote segment
The remote application has to "connect" to a remote segment. Logically speaking the connection process consists

in finding the address and the size of the remote segment within the network address space.

This is achieved by calling the function SCIConnectSegment():

sci_desc_t v_dev;

sci_remote_segment_t remote_segment;

sci_error_t error;

SCIInitialize(...);

SCIOpen(&v_dev, ...); /* initialize the virtual device */

SCIConnectSegment(v_dev, /* virtual device */

&remote_segment, /* handle to the remote segment resource*/

RECEIVER_NODE_ID, /* remote node id */

RECEIVER_SEG_ID, /* remote segment id */

ADAPTER_NO, /* local adapter number */

NO_CALLBACK, /* ignore this for the moment */

NO_ARG, /* callback arg, ignore */

SCI_INFINITE_TIMEOUT, /* timeout */

NO_FLAGS,

&error);

if (error == SCI_ERR_OK) {

/* the remote segment is connected */

} else {

/* manage error */

}

Let us look at the list of parameters of the above call:

v_dev represents an initialized virtual device, needed to communicate with the driver.

remote_segment is a handle to a sci_remote_segment descriptor, which contains information about the

connection. The descriptor is allocated and initialized by the call, if successful.

The remote node and segment identifiers (RECEIVER_NODE_ID and RECEIVER_SEG_ID respectively)

uniquely locate a memory segment on the network.

The adapter number ADAPTER_NO refers to the local adapter we want to use to access the remote segment.

SISCI API 2 – SISCI Users Guide - Page 17

The SCIConnectSegment() call is by default synchronous. It waits until either the connection request is

resolved, or the specified timeout, expressed in milliseconds, expires. Only the first option can cause the function

to return if the timeout is infinite, as shown above. The call can be made asynchronous; this behavior is

described in the “Events and callbacks" section starting on page 46.

Once the remote segment is connected, its size (expressed in bytes) can be determined by calling the function

SCIGetRemoteSegmentSize():

sci_remote_segment_t remote_segment;

size_t remote_segment_size;

SCIConnectSegment(..., &remote_segment, ...);

remote_segment_size = SCIGetRemoteSegmentSize(remote_segment);

Disconnecting from a remote segment
Once an application has finished using a remote segment, it should disconnect from it, releasing the remote

segment resource.

sci_remote_segment_t segment;

sci_error_t errror;

SCIConnectSegment(..., &segment, ...);

/* use the segment */

SCIDisconnectSegment(segment, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* the remote segment resource is released */

} else {

/* manage error */

}

A typical error for SCIDisconnectSegment() is SCI_ERR_BUSY, meaning that there are other resources

depending on the remote segment resource.

SISCI API 2 – SISCI Users Guide - Page 18

Accessing memory
You can start using a memory segment once it is made available, which means you have a valid handle to either

a local or remote segment resource. You can access it in two ways: either you map it into the address space of

your process and then you access it as you normally access memory, e.g. via pointer operations, or you can

choose the so-called Direct Memory Access (DMA) approach, which delegates the actual data transfer to the

network adapter.

In this chapter, you will learn how to use memory-mapped segments, in particular:

• How to map a local memory segment into the addressable space of your program.

• How to map a remote memory segment into the addressable space of your program.

• How to access data within a mapped segment.

The use of DMA is addressed in the “

/* receiver program */

#include "sisci_error.h"

#include "sisci_api.h"

#include <stdio.h>

#define RECEIVER_SEG_ID 4

#define RECEIVER_SEG_SIZE 4096

#define ADAPTER_NO 0

#define NO_CALLBACK 0

#define NO_ARG 0

#define NO_FLAGS 0

#define PRINT_COMMAND 1

int

main(int argc, char* argv[])

{

sci_desc_t v_dev;

sci_error_t error;

sci_local_segment_t local_segment;

sci_map_t local_map;

int* local_address;

/* initialize the SCI environment */

SCIInitialize(NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* create a virtual device */

SCIOpen(&v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* allocate a local segment */

SCICreateSegment(v_dev, &local_segment,

RECEIVER_SEG_ID, RECEIVER_SEG_SIZE,

NO_CALLBACK, NO_ARG, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SciPrepareSegment(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* map the local segment */

local_address = (int*)SCIMapLocalSegment(local_segment, &local_map,

0 /* offset */, RECEIVER_SEG_SIZE, 0 /* address hint */, NO_FLAGS,

&error);

if (error != SCI_ERR_OK) return 1;

/* initialise the first word of the to-be- accessed segment */

 *local_address = ~PRINT_COMMAND;

/* export local segment */

SISCI API 2 – SISCI Users Guide - Page 19

SCISetSegmentAvailable(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* wait for the sender process to send the print command */

while (*l_addr != PRINT_COMMAND) ;

printf("Hello, World!\n");

/* cleanup */

SCISetSegmentUnavailable(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIUnmapSegment(local_map, NO_FLAGS, &error)

if (error != SCI_ERR_OK) return 1;

SCIRemoveSegment(local_segment, NO_FLAGS, error);

if (error != SCI_ERR_OK) return 1;

SCIClose(v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCITerminate();

return 0;

}

DMA” chapter on page 25.

Mapping a local memory segment into addressable space
Let’s start with a local segment:

sci_desc_t v_dev;

sci_local_segment_t local_segment;

sci_map_t local_map;

sci_error_t error;

void* map_address;

SCIInitialize(...);

SCIOpen(&v_dev,...);

SCICreateSegment(v_dev,

&local_segment,

RECEIVER_SEG_ID,

RECEIVER_SEG_SIZE,

NO_CALLBACK,

0,

NO_FLAGS,

&error);

if (error != SCI_ERR_OK) {

 sci_error_t rc = error;

 SCIClose(m_vConnIntrDev, NO_FLAGS, &error);

 SCITerminate();

 return error;

}

SCIPrepareSegment(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* the segment has been successfully created */

size_t offset = 0;

size_t size = RECEIVER_SEG_SIZE;

void* suggested_address = 0;

map_address = SCIMapLocalSegment(local_segment,

&local_map,

offset,

size,

suggested_address,

NO_FLAGS,

SISCI API 2 – SISCI Users Guide - Page 20

error);

if (error == SCI_ERR_OK) {

/* the segment has been successfully mapped at virtual

 * address map_address */

} else {

/* manage mapping error */

}

} else {

/* manage prepare error */

}

The code sample above maps the allocated segment from its beginning (offset = 0) and for its entire size

(size = RECEIVER_SEG_SIZE) to a local pointer. It is possible to map only parts of the segment, varying these

two parameters, with the constraint that the sum of size and offset does not go beyond the end of the

segment. If that happens, the function returns the error SCI_ERR_OUT_OF_RANGE. Size and offset must also

satisfy some implementation-dependent alignment constraints; otherwise, error is set to either

SCI_ERR_SIZE_ALIGNMENT or SCI_ERR_OFFSET_ALIGNMENT. If you need these implementation-dependent

values, you can use SCIQuery() with command SCI_Q_ADAPTER and sub-commands

SCI_Q_ADAPTER_DMA_SIZE_ALIGNMENT and SCI_Q_ADAPTER_DMA_OFFSET_ALIGNMENT.

suggested_address is a suggested virtual address where the segment should be mapped. Its value is taken

into account only if the flag SCI_FLAG_FIXED_MAP_ADDR is set.

SCIMapLocalSegment() also accepts the flag SCI_FLAG_READONLY_MAP, which causes the segment to be

mapped in read-only mode. If the function call succeeds, the returned value map_address is a pointer to the

beginning of the mapped segment and map is a handle to a correctly initialized mapped segment descriptor.

Mapping a remote memory segment into addressable space
Mapping a remote memory segment into the addressable space of a program is very similar to the procedure

followed for a local segment. The following code shows the usage of SCIMapRemoteSegment():

sci_desc_t v_dev;

sci_remote_segment_t remote_segment;

sci_map_t remote_map;

sci_error_t error;

volatile void* map_address;

SCIInitialize(...);

SCIOpen(&v_dev, ...);

SCIConnectSegment(v_dev,

&remote_segment,

RECEIVER_NODE_ID,

RECEIVER_SEG_ID,

ADAPTER_NO,

NO_CALLBACK,

NO_ARG,

SCI_INFINITE_TIMEOUT,

NO_FLAGS,

&error);

if (error == SCI_ERR_OK) {

/* the remote segment has been successfully connected */

size_t offset = 0;

size_t size = SCIGetRemoteSegmentSize(remote_segment);

void* suggested_address = 0;

map_address = SCIMapRemoteSegment(remote_segment,

&remote_map,

offset,

size,

suggested_address,

NO_FLAGS,

&error);

if (error == SCI_ERR_OK) {

SISCI API 2 – SISCI Users Guide - Page 21

/* the segment has been successfully mapped at virtual

 * address map_address */

} else {

/* manage mapping error */

}

} else {

/* manage connection error */

}

The code sample above maps the connected segment from its beginning (offset = 0) and for its entire size

(which has been determined using the function SCIGetRemoteSegmentSize() and should be equal to

RECEIVER_SEG_SIZE). It is possible to only map parts of the segment, varying these two parameters, with the

constraint that the sum of size and offset does not go beyond the end of the segment. If that happens, the

function returns the error SCI_ERR_OUT_OF_RANGE. Size and offset must also satisfy some

implementation-dependent alignment constraints; otherwise error is set to either SCI_ERR_SIZE_ALIGNMENT

or SCI_ERR_OFFSET_ALIGNMENT.

suggested_address is a suggested virtual address where the segment should be mapped. Its value is taken

into account only if the flag SCI_FLAG_FIXED_MAP_ADDR is set. SCIMapRemoteSegment() also accepts the

flag SCI_FLAG_READONLY_MAP, which causes the segment to be mapped in read-only mode.

remote_map is a handle to the mapped segment descriptor and is initialized by the call, if successful. Note that

the type of remote_map is sci_map_t, which is the same type of the handle to the local mapped segment

descriptor.

If the function call succeeds, the returned value map_address is a pointer to the beginning of the mapped

segment. Note that the pointer is declared as volatile to prevent the compiler from doing wrong optimizations of

the code.

Unmapping a mapped memory segment
A mapped memory segment should be unmapped once it is no longer needed. Since the type of a local and a

remote mapped segment is the same, there is a unique function, called SCIUnmapSegment(), that performs this

operation.

For a local segment then, the sequence of operations from creation to removal, for what concerns local access, is

the following:

sci_local_segment_t local_segment;

sci_map_t local_map;

sci_error_t error;

SCICreateSegment(..., &local_segment, ...);

SCIPrepareSegment(local_segment, ADAPTER_NO, ...);

SCIMapLocalSegment(local_segment, &local_map, ...);

/* use the mapped segment */

SCIUnmapSegment(local_map, NO_FLAGS, &error)

if (error == SCI_ERR_OK) {

/* the segment is not mapped any more */

} else {

/* manage error */

}

SCIRemoveSegment(local_segment, ...);

For a remote segment:

sci_remote_segment_t remote_segment;

sci_map_t remote_map;

sci_error_t errror;

void* addr;

SCIConnectSegment(..., &remote_segment, ...);

SISCI API 2 – SISCI Users Guide - Page 22

SCIMapRemoteSegment(remote_segment, &remote_map, ...);

/* use the mapped segment */

SCIUnmapSegment(remote_map, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* the remote segment is not mapped any more */

} else {

/* manage error */

}

SCIDisconnectSegment(remote_segment, ...);

For a remote segment to be connectable, it must have been properly exported on the other node. The syntax of

SCIUnmapSegment() is very simple: local_map (remote_map) is a handle to a mapped local (remote)

segment descriptor; there are no special flags and, if the function fails, error typically has the value

SCI_ERR_BUSY, meaning that you have not correctly considered all the dependencies to the mapped segment.

Accessing data within mapped memory segments
Once a local or remote memory segment is mapped into the addressable space, a program sees that memory as

any other piece of memory it has allocated using malloc() or similar functions and it can access it via the

normal use of pointers: it can read from it, write to it, do a memcpy() and so on.

For a local segment:

sci_local_segment_t local_segment;

sci_map_t local_map;

int* l_addr; /* address to local segment */

SCICreateSegment(..., &local_segment, ...);

SCIPrepareSegment(local_segment, ADAPTER_NO, ...);

l_addr = (int*)SCIMapLocalSegment(local_segment, &local_map, ...);

l_addr = 1; / local write operation */

l_addr; / local read operation */

For a remote segment:

sci_remote_segment_t remote_segment;

sci_map_t remote_map;

volatile int* r_addr; /* address to remote segment */

SCIConnectSegment(..., &remote_segment, ...);

r_addr = (volatile int*)SCIMapRemoteSegment(remote_segment, &remote_map, ...);

r_addr = 1; / remote write operation */

r_addr; / remote read operation */

Remote operations enables access to memory that is physically resident on another node. Having mapped access

to remote memory allows very low latency, very low overhead data transfers based on simple CPU load or store

operations.

Remote memory access example
It’s time to summarize all the topics so far in a sort of “big picture”, in order to have a proper understanding of

the available features offered by the SISCI API for the use of remote memory. There are indeed other important

aspects, for example, how to check for data transfer errors, but we are already able to implement a simple “Hello,

World!” application. This is actually composed of two programs: a sender sends a command to a receiver which

then prints the string “Hello, World!”.

Example 4-1 shows the sender. It opens a virtual device, connects to a known remote segment, maps it into its

own address space, and writes the print command at the beginning of that piece of memory, which is

automatically converted by the hardware into a remote write operation, and finally cleans everything up and

exits.

Example 4-1. A sender program based on remote memory access

SISCI API 2 – SISCI Users Guide - Page 23

/* sender program */

#include "sisci_api.h"

#define RECEIVER_NODE_ID 4

#define RECEIVER_SEG_ID 4

#define NO_ARG 0

#define NO_FLAGS 0

#define PRINT_COMMAND 1

int

main(int argc, char* argv[])

{

sci_desc_t v_dev;

sci_error_t error;

sci_remote_segment_t remote_segment;

size_t remote_segment_size;

sci_map_t remote_map;

volatile int* remote_address;

/* initialize the SCI environment */

SCIInitialize(NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* create a virtual device */

SCIOpen(&v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* connect to the remote segment */

SCIConnectSegment(v_dev, &remote_segment, RECEIVER_NODE_ID, RECEIVER_SEG_ID,

ADAPTER_NO, NO_CALLBACK, NO_ARG, SCI_INFINITE_TIMEOUT, NO_FLAGS,

&error);

if (error != SCI_ERR_OK) return 1;

remote_segment_size = SCIGetRemoteSegmentSize(remote_segment);

/* map the remote segment */

remote_address = (volatile int*)SCIMapRemoteSegment(

remote_segment, &remote_map,0 /* offset */, remote_segment_size,

0 /* address hint */, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* send the print command */

*remote_address = PRINT_COMMAND;

/* cleanup */

SCIUnmapSegment(remote_map, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIDisconnectSegment(remote_segment, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIClose(v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCITerminate();

return 0;

}

Example 4-2 shows the receiver. It opens a virtual device, allocates a local memory segment, maps it into its

address space in such a way that it can access it, initializes the first word of that memory to something different

than the print command, exports the segment into the network address space, waits for the print command

(which simply means checking the first word of the memory segment in a polling loop), prints a message, and

exits after having cleaned up.

Note that the initialization of the first word of the memory segment is done before the segment itself is made

available to other nodes to avoid a race condition, that is, to ensure the value updated from remote is not

overwritten by a late initialization.

SISCI API 2 – SISCI Users Guide - Page 24

SISCI API 2 – SISCI Users Guide - Page 25

Example 4-2. A receiver program based on remote memory access

/* receiver program */

#include "sisci_error.h"

#include "sisci_api.h"

#include <stdio.h>

#define RECEIVER_SEG_ID 4

#define RECEIVER_SEG_SIZE 4096

#define ADAPTER_NO 0

#define NO_CALLBACK 0

#define NO_ARG 0

#define NO_FLAGS 0

#define PRINT_COMMAND 1

int

main(int argc, char* argv[])

{

sci_desc_t v_dev;

sci_error_t error;

sci_local_segment_t local_segment;

sci_map_t local_map;

int* local_address;

/* initialize the SCI environment */

SCIInitialize(NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* create a virtual device */

SCIOpen(&v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* allocate a local segment */

SCICreateSegment(v_dev, &local_segment,

RECEIVER_SEG_ID, RECEIVER_SEG_SIZE,

NO_CALLBACK, NO_ARG, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SciPrepareSegment(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* map the local segment */

local_address = (int*)SCIMapLocalSegment(local_segment, &local_map,

0 /* offset */, RECEIVER_SEG_SIZE, 0 /* address hint */, NO_FLAGS,

&error);

if (error != SCI_ERR_OK) return 1;

/* initialise the first word of the to-be- accessed segment */

 *local_address = ~PRINT_COMMAND;

/* export local segment */

SCISetSegmentAvailable(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* wait for the sender process to send the print command */

while (*l_addr != PRINT_COMMAND) ;

printf("Hello, World!\n");

/* cleanup */

SCISetSegmentUnavailable(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIUnmapSegment(local_map, NO_FLAGS, &error)

if (error != SCI_ERR_OK) return 1;

SCIRemoveSegment(local_segment, NO_FLAGS, error);

if (error != SCI_ERR_OK) return 1;

SCIClose(v_dev, NO_FLAGS, &error);

SISCI API 2 – SISCI Users Guide - Page 26

if (error != SCI_ERR_OK) return 1;

SCITerminate();

return 0;

}

SISCI API 2 – SISCI Users Guide - Page 27

DMA
DMA data transfers are typically implemented by a separate hardware transfer function on the adapter card or

within the system. This allows the CPU to do something else during the transfer, though latencies and overhead

usually increase because of the time required to setup and control the DMA engine. However, several data

transfers can be joined and sent together to amortize the overhead. Higher layer software may want to implement

its data transfer by sending small amounts of data using PIO and larger amounts of data using DMA operations.

In this chapter, you will learn:

• What a DMA queue is.

• How to manage DMA queues.

• How to transfer data with DMA.

Creating a DMA queue
SCICreateDMAQueue() is used to allocate and initialize a DMA queue resource:

sci_desc_t v_dev;

sci_dma_queue_t dma_queue;

sci_error_t error;

unsigned int max_entries = 4;

SCIInitialize(...);

SCIOpen(&v_dev, ...);

SCICreateDMAQueue(v_dev,

&dma_queue,

ADAPTER_NO,

max_entries,

NO_FLAGS,

&error);

if (error == SCI_ERR_OK) {

/* the queue is available */

} else {

/* manage error */

}

As usual, v_dev is the virtual device that allows communicating with the driver.

dma_queue is the handle to the DMA queue descriptor just allocated and initialized.

ADAPTER_NO states which network adapter the DMA engine we want to use is on.

max_entries is the maximum length of the queue, so in this case we can enqueue up to 4 data transfer

specifications.

If the call to SCICreateDMAQueue() is successful, the DMA queue moves to the IDLE state.

Removing a DMA queue
Once a DMA queue is not needed any more it can be released:

sci_dma_queue_t dma_queue;

sci_error_t error;

SCICreateDMAQueue(..., &dma_queue, ...);

/* use the queue */

SCIRemoveDMAQueue(dma_queue,

NO_FLAGS,

SISCI API 2 – SISCI Users Guide - Page 28

&error);

if (error == SCI_ERR_OK) {

/* queue successfully released */

} else {

/* manage error */

}

The DMA queue must not be used after it has been removed.

According to “Figure 2 - DMA queue states and transitions” on page Figure 2 - DMA queue states and
transitions, SCIRemoveDMAQueue() can only be called if the queue is either in its initial state (IDLE) or in a

final one (DONE, ERROR or ABORTED). If the call succeeds, the queue exits from the state diagram.

DMA queues
A DMA queue is one of the resources specified in the SISCI API and is the fundamental mechanism to access

the DMA functionality provided by the API. Its type is sci_dma_queue and the handle to it is of type

sci_dma_queue_t. The queue is the vehicle used to pass one or more specifications of data transfers to the

DMA engine available on the network adapter.

The state diagram for a DMA queue is shown in “Figure 2 - DMA queue states and transitions”. A transition

from one state to another is either triggered by an API call or by an asynchronous event. Only the transitions

specified in the state diagram are legal. If an API function is illegally called, the

SCI_ERR_ILLEGAL_OPERATION error is returned.

Figure 2 - DMA queue states and transitions

The meaning of the states is as follows:

IDLE: The queue has been successfully created and it is empty.

POSTED: The queue has been passed down to the DMA engine on the network adapter and it is being

processed.

DONE: All the data transfers specified in the queue have been successfully completed.

ERROR: At least one of the data transfers specified in the queue has failed.

ABORTED: The program has interrupted the DMA engine while it was processing the queue.

SISCI API 2 – SISCI Users Guide - Page 29

Querying the state of a DMA queue
Before executing an operation on a DMA queue, it can be worthwhile to query its state to be sure that the

operation would be legal. This can be done calling SCIDMAQueueState():

sci_dma_queue_t dma_queue;

sci_error_t error;

sci_dma_queue_state_t dma_q_state;

SCICreateDMAQueue(..., &dma_queue, ...);

dma_q_state = SCIDMAQueueState(dma_queue);

/* do something with the queue */

The type sci_dma_queue_state_t enumerates all the possible states a DMA queue can be in:

typedef enum {

SCI_DMAQUEUE_IDLE,

SCI_DMAQUEUE_POSTED,

SCI_DMAQUEUE_DONE,

SCI_DMAQUEUE_ABORTED,

SCI_DMAQUEUE_ERROR

} sci_dma_queue_state_t;

Querying the state of a queue does not affect its current state.

Starting a single DMA transfer
Once a DMA queue is available, you can use it to transfer data between a local and remote segment or between

local user malloced memory and a remote segment.

A data transfer specification / DMA descriptor consists of:

• A local memory segment or user malloced memory

• A remote memory segment

• An offset within the local segment

• An offset within the remote segment

• The number of bytes to transfer

The function used for sending a single block of data between two segments is SCIStartDMATransfer().

sci_error_t error;

sci_local_segment_t local_segment;

sci_remote_segment_t remote_segment;

sci_dma_queue_t dma_queue;

size_t local_offset = 0;

size_t remote_offset = 0;

size_t size = 4096;

SCICreateSegment(..., &local_segment, ...);

SCIPrepareSegment(local_segment, ADAPTER_NO, ...);

SCIConnectSegment(..., &remote_segment, ..., ADAPTER_NO, ...);

SCICreateDMAQueue(..., &dma_queue, ADAPTER_NO, ...);

SCIStartDmaTransfer(dma_queue,

 local_segment,

 remote_segment,

 local_offset,

 size,

 remote_offset,

 NO_CALLBACK,

 NULL,

 NO_FLAGS,

 &error);

if (error == SCI_ERR_OK) {

SISCI API 2 – SISCI Users Guide - Page 30

/* the transfer has been correctly started */

} else {

/* manage error */

}

Data is by default transferred from the local segment (starting at offset local_offset and for size bytes) to

the remote segment (starting at offset remote_offset). To transfer data from a remote segment to a local

segment, you have to specify the SCI_FLAG_DMA_READ flag.

The local segment must be “prepared” in order for the network adapter to be able to access it. Moreover, note

that the local segment preparation, the remote segment connection, and the creation of the DMA queue are all

consistent from the point of view of the network adapter used.

An unprepared local segment, a not connected remote segment, and invalid specification of offsets and/or size

are all causes of errors (check the SISCI API specification for the details). The function call will also fail if the

DMA queue is already in use (by a previous, but not completed, DMA transfer).

The SCIStartDMATransfer() does not wait for the transfers to complete but simply returns when the queue

has been passed to the DMA engine, so that the program can continue doing something else that doesn’t depend

on the data transfers.

With the introduction of SISCI API version 5.5.0, it is possible to perform DMA transfers with user-allocated

memory buffers.

Memory buffers can either serve as the source of a DMA transfer to a remote segment, or the destination of a

transfer from a remote segment.

Such transfers are started with the function SCIStartDmaTransferMem().

void *local_buffer = malloc(size);

SCIStartDmaTransferMem(dma_queue,

 local_buffer,

 remote_segment,

 size,

 remote_offset,

 NO_CALLBACK,

 NULL,

 NO_FLAGS,

 &error);

By default, this function transfers <size> bytes from the start of <local_buffer> to the remote segment, starting at

<remote_offset>.

The function is otherwise semantically identical to SCIStartDmaTransfer().

Note that to maximize DMA performance, the address of <local_buffer> should be aligned on a minimum of 64,

and optimally PAGE_SIZE, bytes.

Starting multiple DMA transfers
If the DMA queue consists of several elements, the function SCIStartDMATransferVec() must be used.

The multiple transfer elements need to be organized into an array of descriptors where each descriptor specifies

each transfer similar to the single transfer argument SCIStartDMATransfer().

dis_dma_vec_t dis_dma_vec[num_elements];

dis_dma_vec[i].size = ‘number of bytes in this transfer element’;

dis_dma_vec[i].local_offset = ‘offset in local segment’;

dis_dma_vec[i].remote_offset = ‘offset in remote segment’;

dis_dma_vec[i].flags = ‘0 (equals to DMA_PUSH) or SCI_FLAG_DMA_READ’;

SCIStartDmaTransferVec(dma_queue,

SISCI API 2 – SISCI Users Guide - Page 31

 local_segment,

 remote_segment,

 number_of_transfers,

 dis_dma_vec,

 NO_CALLBACK,

 NULL,

 flags,

 &error);

The SCIStartDMATransferVec() does not wait for the transfers to complete but returns simply when the

queue has been passed to the DMA engine.

Waiting for DMA completion
How do we know when the processing of a DMA queue has terminated? There are several approaches to the

problem, and you can choose the solution more suitable for your application.

If you want a synchronous behavior, you can just sit and wait:

sci_error_t error;

sci_dma_queue_t dma_queue;

sci_dma_queue_state_t dma_q_state;

SCICreateDMAQueue(..., &dma_queue, ...);

SCIStartDMATransfer(dma_queue, ...);

dma_q_state = SCIWaitForDMAQueue(dma_queue,

SCI_INFINITE_TIMEOUT,

NO_FLAGS,

&error);

if (error == SCI_ERR_OK) {

/* the value of dma_q_state tells if the data transfers

 * have been successfull or failed */

} else {

/* manage error */

}

If you do not want to wait forever, you can just specify another value for the timeout, expressed in milliseconds,

other than SCI_INFINITE_TIMEOUT. In such a case, if the timeout expires, error is set to SCI_ERR_TIMEOUT.

A call to SCIWaitForDMAQueue() is meaningful only from the POSTED state but it is also allowed from a

final state (ERROR, DONE, ABORTED), where it is considered as a no-op. The function returns the state of the

queue, which should be either DONE or ERROR, depending on the success of the data transfers.

Using SCIWaitForDMAQueue() is possible only if no callbacks have been specified in

SCIStartDMAQueue().

If you don’t want to sit and wait for the completion of the DMA queue processing you can poll from time to time

the queue state until it is in a final state, in particular, if it is in the DONE or ERROR states. The code would

look something like the following:

sci_error_t error;

sci_dma_queue_t dma_queue;

sci_dma_queue_state_t dma_q_state;

SCICreateDMAQueue(..., &dma_queue, ...);

SCIStartDMATransfer(dma_queue, ...);

while (...) {

/* do something */

sci_dma_queue_state_t dma_q_state;

dma_q_state = SCIDMAQueueState(dma_queue);

switch (dma_q_state) {

case SCI_DMAQUEUE_DONE:

SISCI API 2 – SISCI Users Guide - Page 32

/* good! All transfers have completed successfully */

break;

case SCI_DMAQUEUE_ERROR:

/* less good; manage the failed transfers, e.g. restart the queue */

break;

default:

/* other cases */

break;

}

/* do something else */

}

Finally, if you want neither to wait explicitly for the completion of the queue processing nor to poll the state of

the queue, the solution for you is to use a callback mechanism (see the “Events and callbacks" section starting

on page 46).

Aborting a DMA queue processing
If you want to stop the processing of a DMA queue you can do so by calling the function

SCIAbortDMAQueue().

The call is only meaningful from the POSTED state, but it is also allowed from a final state (ERROR, DONE,

ABORTED) where it is considered as a no-op. In principle, the state of the queue after a successful abort

operation is ABORTED, but there is a potential race condition if the call happens at about the same time the

queue processing is terminating and the state changes from POSTED to DONE (or to ERROR). To know what

has really happened, check the state of the queue with SCIDMAQueueState().

sci_error_t error;

sci_dma_queue_t dma_queue;

SCICreateDMAQueue(..., &dma_queue, ...);

SCIStartDMATransfer(dma_queue, ...);

/* do something */

SCIAbortDMAQueue(dma_queue, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

sci_dmaqueue_state_t dma_q_state;

dma_q_state = SCIDMAQueueState(dma_queue);

/* check the value of dma_q_state */

} else {

/* manage error */

}

Reusing a DMA queue
A DMA queue can be reused once the transfer has completed and the state is SCI_DMAQUEUE_IDLE,

SCI_DMAQUEUE_DONE, SCI_DMAQUEUE_ABORTED or SCI_DMAQUEUE_ERROR.

DMA example
Here we present the same example shown at the end of the previous chapter, a simple send-receive application: a

sender program sends a command, this time using DMA, to a receiver program which then prints the “Hello,

World!” string.

Example 5-1 shows the operations performed by the sender. Notice that it has to:

• Allocate a local memory segment, which will be the source of the DMA data transfer.

• Map that memory segment into its own address space in order to be able to initialize it.

Example 5-1. A sender program based on DMA

/* DMA based sender program */

#include "sisci_error.h"

#include "sisci_api.h"

SISCI API 2 – SISCI Users Guide - Page 33

#define RECEIVER_NODE_ID 4

#define RECEIVER_SEG_ID 4

#define SENDER_SEG_ID 4

#define SENDER_SEG_SIZE 4

#define ADAPTER_NO 0

#define NO_CALLBACK 0

#define NO_ARG 0

#define NO_FLAGS 0

#define PRINT_COMMAND 1

int

main(int argc, char* argv[])

{

sci_desc_t v_dev;

sci_error_t error;

sci_remote_segment_t remote_segment;

size_t remote_segment_size;

sci_local_segment_t local_segment;

sci_map_t local_map;

int* local_address;

sci_dma_queue_t dma_queue;

sci_dma_queue_state_t dma_queue_state;

/* initialize the environment */

SCIInitialize(NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* create a virtual device */

SCIOpen(&v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* allocate a local segment */ /* could use private segments */

SCICreateSegment(v_dev, &local_segment, SENDER_SEG_ID, SENDER_SEG_SIZE,

NO_CALLBACK, NO_ARG, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIPrepareSegment(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* map the local segment */

local_address =

(int*)SCIMapLocalSegment(local_segment, &local_map,

0 /* offset */, SENDER_SEG_SIZE,

0 /* address hint */, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* create the DMA queue */

SCICreateDMAQueue(v_dev, &dma_queue, ADAPTER_NO,

1 /* max entries */, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* connect to the remote segment */

SCIConnectSegment(v_dev, &remote_segment,

RECEIVER_NODE_ID, RECEIVER_SEG_ID,

ADAPTER_NO, NO_CALLBACK, 0,

SCI_INFINITE_TIMEOUT, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* initialize the local segment to contain the PRINT command */

*local_address = PRINT_COMMAND;

/* Start the DMA transfer */

SCIStartDMATransfer(dma_queue, local_segment, remote_segment,

0 /* local offset */, sizeof(PRINT_COMMAND) /* transfer size */,

0 /* remote offset */, NO_CALLBACK, NULL, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* wait for the DMA queue processing to complete */

SISCI API 2 – SISCI Users Guide - Page 34

SCIWaitForDMAQueue(dma_queue, INFINITE_TIMEOUT, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* be sure the transfer has completed successfully */

dma_queue_state = SCIDMAQueueState(dma_queue);

if (dma_queue_state != SCI_DMAQUEUE_DONE) return 1;

/* cleanup */

SCIRemoveDMAQueue(dma_queue, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIUnmapSegment(local_map, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIRemoveSegment(local_segment, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIDisconnectSegment(remote_segment, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIClose(v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCITerminate();

return 0;

}

Example 5-2 below shows the operations performed by the receiver. Notice that the program is identical to

Example 4-2.

SISCI API 2 – SISCI Users Guide - Page 35

Example 5-2. A receiver program based on DMA

/* DMA based receiver program */

#include "sisci_error.h"

#include "sisci_api.h"

#include <stdio.h>

#define RECEIVER_SEG_ID 4

#define RECEIVER_SEG_SIZE 4096

#define ADAPTER_NO 0

#define NO_CALLBACK 0

#define NO_ARG 0

#define NO_FLAGS 0

#define PRINT_COMMAND 1

int

main(int argc, char* argv[])

{

sci_desc_t v_dev;

sci_error_t error;

sci_local_segment_t local_segment;

sci_map_t local_map;

int* local_address;

/* initialize the environment */

SCIInitialize(NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* create a virtual device */

SCIOpen(&v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* allocate a local segment */

SCICreateSegment(v_dev, &local_segment,

RECEIVER_SEG_ID, RECEIVER_SEG_SIZE,

NO_CALLBACK, NO_ARG, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIPrepareSegment(local_segment, ADAPTER_NO, NO_FLAGS, & error);

if (error != SCI_ERR_OK) return 1;

/* map the local segment */

local_address =

(int*)SCIMapLocalSegment(local_segment, &local_map,

0 /* offset */,

RECEIVER_SEG_SIZE,

0 /* address hint */,

NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* initialize the contents of the first word of the to-be-accessed segment */

*local_address = ~PRINT_COMMAND;

/* export local segment */

SCISetSegmentAvailable(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* wait for the sender process to send the print command */

while (*l_addr != PRINT_COMMAND) ;

printf("Hello, World!");

/* cleanup */

SCISetSegmentUnavailable(local_segment, ADAPTER_NO, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIUnmapSegment(local_map, NO_FLAGS, &error)

if (error != SCI_ERR_OK) return 1;

SISCI API 2 – SISCI Users Guide - Page 36

SCIRemoveSegment(local_segment, NO_FLAGS, error);

if (error != SCI_ERR_OK) return 1;

SCIClose(v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCITerminate();

return 0;

}

SISCI API 2 – SISCI Users Guide - Page 37

Interrupts
Interrupts provide a way to notify a remote application that a certain predefined condition, identified by a

positive integer number, has occurred. Similarly to what happens for a memory segment, a SISCI interrupt is

allocated on a node and it is connected to and used from another one.

The SISCI API includes two types of interrupts – with and without data forwarded as a part of the interrupt.

Interrupts without data may have a less resource-consuming implementation, or have less latency on certain

hardware implementations.

Managing SISCI interrupts involves two distinct types of resources:

• A local interrupt is the resource available on the allocating node; it is represented by a descriptor of type

sci_local_interrupt, accessible via a handle of type sci_local_interrupt_t or

sci_local_data_interrupt, accessible via a handle of type sci_local_data_interrupt_t.

• A remote interrupt is the resource available on the importing node and corresponds to a local interrupt

allocated on another node. A remote interrupt is represented by a descriptor of type

sci_remote_interrupt, accessible via a handle of type sci_remote_interrupt_t or

sci_remote_data_interrupt, accessible via a handle of type sci_remote_data_interrupt_t.

In this chapter, you will learn:

• How to allocate an interrupt on the local node and make it available to other nodes.

• How to wait synchronously for an interrupt.

• How to connect to an interrupt available on a remote node.

• How to trigger a remote application using an interrupt.

Managing local interrupts

Allocating an interrupt
An interrupt resource is allocated, initialized and made available to remote nodes calling the function

SCICreateInterrupt():

sci_desc_t v_dev;

sci_local_interrupt_t local_interrupt;

unsigned int interrupt_no;

sci_error_t error;

SCIInitialize(...)

SCIOpen(&v_dev, ...);

/* possibly set interrupt_no */

SCICreateInterrupt(

v_dev,

&local_interrupt,

ADAPTER_NO,

&interrupt_no,

NO_CALLBACK,

NO_ARG,

NO_FLAGS,

&error);

if (error == SCI_ERR_OK) {

/* the interrupt is available to remote applications */

} else {

/* manage error */

}

By default, the driver assigns an identifier to the allocated interrupt. A remote application can trigger the

interrupt by using the same identifier. (You have to make the identifier known to the remote node in some way –

SISCI API 2 – SISCI Users Guide - Page 38

e.g. by transferring it through shared memory). Alternatively, you can propose an identifier to the driver, setting

in advance the parameter interrupt_no and using the flag SCI_FLAG_FIXED_INTNO when calling

SCICreateInterrupt(). If the number is already in use, the error returned is SCI_ERR_INTNO_USED.

Example 6-2 demonstrates the use of SCI_FLAG_FIXED_INTNO to avoid implementing an additional

mechanism to communicate the identifier to the application running on the other node.

Note that the SCICreateInterrupt() allocates and initializes the interrupt and makes it available to other

nodes.

Deallocating an interrupt
Once an interrupt is no longer needed and all the remote nodes have disconnected from it, the local interrupt

resource can be freed:

sci_error_t error;

sci_local_interrupt_t local_interrupt;

SCICreateInterrupt(..., &local_interrupt, ...);

/* use the interrupt */

SCIRemoveInterrupt(local_interrupt, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* the interrupt resource has been correctly freed */

} else {

/* manage error */

}

Waiting for an interrupt
The simplest way to wait for an interrupt to be triggered is to explicitly wait for that event.

sci_error_t error;

sci_local_interrupt_t local_interrupt;

SCICreateInterrupt(..., &local_interrupt, ...);

SCIWaitForInterrupt(local_interrupt, SCI_INFINITE_TIMEOUT, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* the interrupt has been triggered */

} else {

/* manage error */

}

The timeout is expressed in milliseconds. If an error occurs, it can be due to one of two reasons: the timeout has

expired, or the interrupt has been removed in the meantime, presumably by another thread. It is alternatively

possible to use a callback mechanism; this is addressed in the “Interrupts and callbacks” section starting on

page 53.

Managing remote interrupts

Connecting to an interrupt
Like memory segments, the application has to “connect” to a remote interrupt to be able to trigger an interrupt on

a remote node. The operation, achieved by calling SCIConnectInterrupt(), allocates and initializes a

remote interrupt resource, providing a handle to it.

sci_desc_t v_dev;

unsigned int remote_interrupt_no;

sci_remote_interrupt_t remote_interrupt;

sci_error_t error;

SISCI API 2 – SISCI Users Guide - Page 39

SCIInitialize(...);

SCIOpen(&v_dev, ...);

/* set remote_interrupt_no */

SCIConnectInterrupt(v_dev, &remote_interrupt, RECEIVER_NODE_ID,

ADAPTER_NO, remote_interrupt_no,

SCI_INFINITE_TIMEOUT, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* the interrupt is available for triggering */

} else {

/* manage error */

}

A remote interrupt is identified by the node identifier of the exporting node and an integer number, the same one

used to create it with SCICreateInterrupt(). This number may be assigned directly by the underlying driver

software, in which case another mechanism must be foreseen to make this number available to other nodes.

Disconnecting from an interrupt
Once a remote interrupt resource isn’t needed anymore, it has to be released with

SCIDisconnectInterrupt().

sci_remote_interrupt_t remote_interrupt;

sci_error_t error;

SCIConnectInterrupt(..., &remote_interrupt, ...)

/* use the remote interrupt */

SCIDisconnectInterrupt(remote_interrupt, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* the interrupt is not available any more */

} else {

/* manage error */

}

Triggering an interrupt
A remote interrupt is triggered using SCITriggerInterrupt().

sci_remote_interrupt_t remote_interrupt;

sci_error_t error;

SCIConnectInterrupt(..., &remote_interrupt, ...);

SCITriggerInterrupt(remote_interrupt, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* the remote interrupt has been successfully triggered */

} else {

/* manage error */

}

If the application that exported the interrupt is waiting, it should then wake up and proceed with its execution. If

the application does not wait for interrupt, the interrupt will be lost.

Interrupt example
As in the previous examples, the example application is actually composed of two programs: a sender which

connects to and triggers an interrupt exported by a receiver, which after receiving the interrupt prints “Hello,

World!”.

Example 6-1 and Example 6-2 below show the operations performed by the sender and by the receiver

respectively.

SISCI API 2 – SISCI Users Guide - Page 40

Example 6-1. A sender program based on interrupts

/* interrupt based sender program */

#include "sisci_error.h"

#include "sisci_api.h"

#define RECEIVER_NODE_ID 4

#define RECEIVER_INTERRUPT_NO 12345

#define ADAPTER_NO 0

#define NO_CALLBACK 0

#define NO_ARG 0

#define NO_FLAGS 0

int

main(int argc, char* argv[])

{

sci_desc_t v_dev;

sci_error_t error;

sci_remote_interrupt_t remote_interrupt;

/* initialize the environment */

SCIInitialize(NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* create a virtual device */

SCIOpen(&v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* connect to the remote interrupt */

SCIConnectInterrupt(v_dev, &remote_interrupt, RECEIVER_NODE_ID,

ADAPTER_NO, RECEIVER_INTERRUPT_NO,

SCI_INFINITE_TIMEOUT, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* send the print command, i.e. trigger the interrupt */

SCITriggerInterrupt(remote_interrupt, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* cleanup */

SCIDisconnectInterrupt(remote_interrupt, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIClose(v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCITerminate();

return 0;

}

SISCI API 2 – SISCI Users Guide - Page 41

Example 6-2. A receiver program based on interrupts

/* interrupt based receiver program */

#include "sisci_error.h"

#include "sisci_api.h"

#include <stdio.h>

#define RECEIVER_INTERRUPT_NO 12345

#define ADAPTER_NO 0

#define NO_CALLBACK 0

#define NO_ARG 0

#define NO_FLAGS 0

int

main(int argc, char* argv[])

{

sci_desc_t v_dev;

sci_error_t error;

unsigned int interrupt_no;

sci_local_interrupt_t local_interrupt;

/* initialize the environment */

SCIInitialize(NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* create a virtual device */

SCIOpen(&v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

/* use a predefined interrupt number; assume it’s not in use... */

interrupt_no = RECEIVER_INTERRUPT_NO;

/* allocate an interrupt and make it available */

SCICreateInterrupt(v_dev, &local_interrupt, ADAPTER_NO, &interrupt_no,

NO_CALLBACK, NO_ARG, SCI_FLAG_FIXED_INTNO, &error);

if (error != SCI_ERR_OK) return 1;

SCIWaitForInterrupt(local_interrupt, SCI_INFINITE_TIMEOUT, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

printf("Hello, World!");

/* cleanup */

SCIRemoveInterrupt(local_interrupt, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCIClose(v_dev, NO_FLAGS, &error);

if (error != SCI_ERR_OK) return 1;

SCITerminate();

return 0;

}

SISCI API 2 – SISCI Users Guide - Page 42

Advanced features
This chapter addresses some issues that are slightly more advanced than the basic features presented up till now.

Nonetheless, they are fundamental for writing a complete SISCI application.

In this chapter, you will learn:

• How to exploit caching techniques to improve performance.

• How to check for data transfer errors and cope with them.

• How to exploit events generated by the underlying adapter card and interconnect.

• How to use the available callback mechanism in a number of situations.

Error checking
Remote data access is more error-prone than local access. Although the network protocol is robust, an error can

always happen, due for example to a cable being unplugged or a switch being power cycled. Error situations

detected by the network hardware are made available to the upper software layers, which can then react

appropriately; for example, an application may decide to ignore the error while another may retry the affected

data transfer or switch over to an alternative network. The SISCI API provides the means to cope with both

buffering and with data transfer errors. In both cases, the solution is based on the concept of a “sequence”.

Sequences
A sequence is a resource associated to a remote mapped segment, which allows error checking in data transfers

to that segment. The name “sequence” comes from the fact that you are supposed to use it when you execute a

sequence of read or write operations to a remote segment. Like all the resources, a sequence has its own

descriptor type (sci_sequence) and its own handle type (sci_sequence_t).

A sequence resource is allocated using the API function SCICreateMapSequence():

sci_map_t remote_map;

sci_sequence_t sequence;

sci_error_t error;

SCIMapRemoteSegment(..., &remote_map, ...);

SCICreateMapSequence(remote_map, &sequence, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* the sequence is available */

} else {

/* manage error */

}

remote_map represents a remote segment which has been memory-mapped locally. Sequence is the handle to

the sequence descriptor that is allocated and initialized by the function call. Once a sequence is not used

anymore, it is destroyed by invoking SCIRemoveSequence():

sci_sequence_t sequence;

sci_error_t error;

SCICreateMapSequence(..., &sequence, ...);

/* use the sequence */

SCIRemoveSequence(sequence, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* the sequence resource is released */

} else {

/* manage error */

}

SISCI API 2 – SISCI Users Guide - Page 43

Flushing buffers
As mentioned above, one may want to flush write buffers to make sure the data transfer has started to the remote

memory. SCIFlush() is provided to clear any write buffers, the data may still be in transit to the remote

memory when the function returns:

sci_sequence_t sequence;

sci_map_t remote_map;

volatile void* map_address;

map_address = SCIMapRemoteSegment(..., &remote_map, ...);

SCICreateMapSequence(remote_map, &sequence, ...);

map_address = 1; / writes the value 1 to remote memory */

SCIFlush(sequence);

SCIStoreBarrier() is used to empty the write buffers and force any transfer packets to be transmitted and

wait for its completion:

sci_sequence_t sequence;

sci_map_t remote_map;

volatile void* map_address;

map_address = SCIMapRemoteSegment(..., &remote_map, ...);

SCICreateMapSequence(remote_map, &sequence, ...);

map_address = 1; / remote write operation */

SCIStoreBarrier(sequence, NO_FLAGS);

SCIStoreBarrier() returns when transactions related to the associated segment have completed. In other

words, when SCIStoreBarrier() returns, you are sure that all the possibly buffered data for that segment has

arrived at the receiver’s memory unless there has been a transmission error. You should use

SCICheckSequence() if you want to include a check for transmission errors.

Note that SCIFlush() is a local-only operation, affecting only write buffers on the local adapter card, while

SCIStoreBarrier() usually causes some data transmission and therefore some interaction with remote

nodes. SCIStoreBarrier() and SCICheckSequence() are relatively costly operations, so you may not want

to design your application to use these extensively.

Checking for data transfer errors
Sequence is also used to check for errors during data transfers. A sequence needs to be cleared before starting to

move data. This means that no pending errors should exist for the concerned segment.

sci_sequence_t sequence;

sci_error_t error;

sci_sequence_status_t status;

sci_map_t remote_map;

SCICreateMapSequence(remote_map, &sequence, ...);

status = SCIStartSequence(sequence, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* check the status */

} else {

/* manage error */

}

The return value of SCIStartSequence(), if successful, determines whether the data transfer can start (status

equal to SCI_SEQ_OK) or if there are some pending errors (status equal to SCI_SEQ_PENDING). In the latter

case, the function must be called again. The type sci_sequence_status_t contains four different values, but

the other two are meaningless for SCIStartSequence().

The code below demonstrates the use of SCIStartSequence() before the data transfer:

SISCI API 2 – SISCI Users Guide - Page 44

sci_error_t error;

sci_sequence_t sequence;

sci_sequence_status_t status;

do {

status = SCIStartSequence(sequence, NO_FLAGS, &error);

if (error != SCI_ERR_OK) {

/* manage error */

}

} while (status != SCI_SEQ_OK);

/* can transfer data */

SCICheckSequence() checks if a data transfer was affected by errors. What this function actually does is to

check that no errors have occurred since the last successful check, which could have been performed by either

SCICheckSequence() or SCIStartSequence().

sci_sequence_t sequence;

sci_error_t error;

sci_sequence_status_t status;

do {

status = SCIStartSequence(sequence, NO_FLAGS, &error);

if (error != SCI_ERR_OK) {

/* manage error */

}

} while (status != SCI_SEQ_OK)

/* transfer data */

status = SCICheckSequence(sequence, NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

/* check the status */

} else {

/* manage errors */

}

status can assume all the four possible values of the sci_sequence_status_t type:

• SCI_SEQ_OK: the transfer was error free.

• SCI_SEQ_RETRIABLE: the transfer failed due to a non-fatal error (e.g. system busy because of heavy

traffic) but can be immediately retried.

• SCI_SEQ_NOT_RETRIABLE: the transfer failed due to a fatal error (e.g. cable unplugged) and can be

retried only after a successful call to SCIStartSequence().

• SCI_SEQ_PENDING: the transfer failed but the driver hasn’t been able yet to determine the severity of

the error (if fatal or non-fatal); SCIStartSequence() must be called until it succeeds.

By default, SCICheckSequence() also flushes the write buffers and waits for all the interconnect transactions

to complete; in other words, it internally performs an action similar to what SCIStoreBarrier() does. If you

don’t want the flush to be performed, pass SCI_FLAG_NO_FLUSH as a flag. Alternatively, you can perform the

flush but not wait for the completion of all the outstanding network transactions; in this case pass

SCI_FLAG_NO_STORE_BARRIER as a flag. They can be OR’ed together if you want to pass both the flags.

Therefore, if you want an error-free data transfer you should:

1. Start the sequence.

2. Transfer the data.

3. Check the sequence.

a) It is ok continue.

SISCI API 2 – SISCI Users Guide - Page 45

b) If it is not ok and the error is not fatal, retry the transfer and check the sequence.

c) If it is not ok and the error is fatal, restart the sequence, retry the transfer and check the sequence.

The corresponding code would be something like the following:

sci_error_t error;

sci_sequence_t sequence;

sci_sequence_status_t status;

do {

status = SCIStartSequence(sequence, ..., &error);

if (error != SCI_ERR_OK) {

/* manage error */

}

} while (status!= SCI_SEQ_OK);

/* transfer data */

status = SCICheckSequence(sequence, ..., &error);

if (error != SCI_ERR_OK) {

/* manage error */

}

while (status != SCI_SEQ_OK) {

switch (status) {

case SCI_SEQ_RETRIABLE:

break;

case SCI_SEQ_PENDING:

case SCI_SEQ_NOT_RETRIABLE:

/* need a successful SCIStartSequence() before retrying */

do {

status = SCIStartSequence(sequence, ..., &error);

if (error != SCI_ERR_OK) {

/* manage error */

}

} while (status != SCI_SEQ_OK);

break;

default:

/* shouldn’t happen; manage error */

}

/* transfer data */

status = SCICheckSequence(sequence, ..., &error);

if (error != SCI_ERR_OK) {

/* manage error */

}

}

If your application does not require reliable data transfers, but you still want to log when an error occurs, you

could use something like the following:

sci_error_t error;

sci_sequence_t sequence;

sci_sequence_status_t status;

do {

status = SCIStartSequence(sequence, ..., &error);

if (error != SCI_ERR_OK) {

/* manage error */

}

} while (status != SCI_SEQ_OK);

/* transfer data */

status = SCICheckSequence(sequence, ..., &error);

if (error != SCI_ERR_OK) {

/* manage error */

}

while (status != SCI_SEQ_OK) {

SISCI API 2 – SISCI Users Guide - Page 46

switch (status) {

case SCI_SEQ_RETRIABLE:

break;

case SCI_SEQ_PENDING:

case SCI_SEQ_NOT_RETRIABLE:

/* need a successful SCIStartSequence() before retrying */

do {

status = SCIStartSequence(sequence, ..., &error);

if (error != SCI_ERR_OK) {

/* manage error */

}

} while (status != SCI_SEQ_OK);

break;

default:

/* shouldn’t happen; manage error */

}

/* log the occurence of the error */

status = SCICheckSequence(sequence, ..., &error);

if (error != SCI_ERR_OK) {

/* manage error */

}

}

Notice how the code is almost identical to the previous example for reliable communication, the only difference

being that you now do not retry the data transfer after a failure; instead, you simply log somewhere that an error

occurred. You still need to restart the sequence in case of error, otherwise the error flags would not be in a clean

state at the beginning of the next data transfer.

Events and callbacks
On certain conditions a component of the network - be it a piece of hardware, a driver, or an application -

generates a so-called event. Examples of an event are a cable being plugged or unplugged, the disappearance of a

remote segment because of a node failure, the completion of a DMA queue processing, a triggered interrupt, etc.

Some events are managed directly by the SISCI driver, whereas others can be forwarded to an application, which

can then either ignore or catch them. There are two ways you can catch an event: either you wait for it, blocking

the process, or you can register a callback function, which will be called when the event occurs.

Each of the following sections concerns a different context for events: local memory segments, remote memory

segments, DMA queues, and interrupts.

Local segment events
Five events are related to local memory segments. Their names are collected in an enumeration type called

sci_segment_cb_reason_t. The name comes from the fact that a member of such enumeration is passed to a

callback function as the reason for its invocation (see later in the section).

typedef enum {

SCI_CB_CONNECT,

SCI_CB_DISCONNECT,

SCI_CB_NOT_OPERATIONAL,

SCI_CB_OPERATIONAL,

SCI_CB_LOST

} sci_segment_cb_reason_t;

Their meaning is the following:

SCI_CB_CONNECT

A new connection has been established from a remote node.
SCI_CB_DISCONNECT

An existing connection has been released.
SCI_CB_NOT_OPERATIONAL

The route to a connected node is temporarily unavailable.

SISCI API 2 – SISCI Users Guide - Page 47

SCI_CB_OPERATIONAL

The route to a connected node is available (again).
SCI_CB_LOST

An unrecoverable event has occurred on a connected node (e.g., it may have rebooted).

All these events are passed to the application, which may wish to intercept them. All the resources depending on

a local segment should be freed before the segment itself could be removed. Some of these dependencies are due

to connected nodes, so for example, the exporting application can catch the above events, in particular the

CONNECT, DISCONNECT and LOST events, in order to keep an up-to-date table of all the established connections,

along with their state.

Local segment synchronous event handling
The simplest way to catch events is just to wait for them:

sci_local_segment_t segment;

unsigned int source_node_id;

unsigned int local_adapter_no;

sci_error_t error;

sci_segment_cb_reason_t reason;

SCICreateSegment(..., &segment, ..., NO_FLAGS, ...);

SCIPrepareSegment(..., segment, ...);

SCISetSegmentAvailable(..., segment, ...);

/* The segment is now available for remote connections */

reason = SCIWaitForLocalSegmentEvent(segment,

&source_node_id,

&local_adapter_no,

SCI_INFINITE_TIMEOUT,

NO_FLAGS,

&error);

if (error == SCI_ERR_OK) {

switch (reason) {

case SCI_CB_CONNECT:

/* update the connection table for the segment */

break;

case SCI_CB_DISCONNECT:

/* update the connection table for the segment */

break;

case SCI_CB_OPERATIONAL:

/* the segment is usable */

break;

case SCI_CB_NOT_OPERATIONAL:

/* the situation may recover */

break;

case SCI_CB_LOST:

/* update the connection table for the segment */

break;

default:

/* error */

break;

}

} else {

/* manage error */

}

The code sample above makes a local segment available to remote nodes and waits for an event concerning the

segment. The call to SCIWaitForLocalSegmentEvent() provides the event that caused it to return;

moreover, it sets the identifier of the node that generated the event and the local adapter that received that event.

SCIWaitForLocalSegmentEvent() can fail because the timeout has expired (with error set to

SCI_ERR_TIMEOUT) or because the handle is invalid, for example when the segment has been removed (error

is set to SCI_ERR_CANCELLED).

SISCI API 2 – SISCI Users Guide - Page 48

Local segment asynchronous event handling
An event can be caught asynchronously, through a callback mechanism. In order to do this, a callback function

must be registered when calling SCICreateSegment(). Compare the following excerpt of C code with the one

used in the “Managing local segment” section on page 13:

sci_desc_t v_dev;

sci_local_segment_t segment;

sci_error_t error;

void* arg = 0;

SCIInitialize(...);

SCIOpen(&v_dev,...);

/* possible setting of arg */

SCICreateSegment(v_dev, &segment,

RECEIVER_SEG_ID, /* segment identifier */

RECEIVER_SEG_SIZE, /* size */

local_segment_cb, /* callback function */

arg, /* callback argument */

SCI_FLAG_USE_CALLBACK, /* enables callback */

&error);

if (error == SCI_ERR_OK) {

/* a segment is available for use */

} else {

/* manage error */

}

Where local_segment_cb is a function with the following prototype:

sci_callback_action_t

local_segment_cb(void* arg,

sci_local_segment_t segment,

sci_segment_cb_reason_t reason,

unsigned int node_id,

unsigned int local_adapter_no,

sci_error_t error);

Which corresponds to the type sci_cb_local_segment_t.

In the callback prototype, arg is the same parameter as specified in SCICreateSegment(). It is defined as a

void* so that anything can be passed to it: from a null pointer, to a primitive value, to a pointer to a larger data

structure.

The other parameters guarantee that the function gets the same information as is available after a

SCIWaitForLocalSegmentEvent() call.

Note how the value of the flags parameter in SCICreateSegment() is now SCI_FLAG_USE_CALLBACK.

According to the API specification, the use of this option prevents us from using

SCIWaitForLocalSegmentEvent().

The return value of a callback is of type sci_callback_action_t which is defined as follows:

typedef enum {

SCI_CALLBACK_CANCEL = 1,

SCI_CALLBACK_CONTINUE

} sci_callback_action_t;

The return value of the callback function tells the driver whether the callback is still active

(SCI_CALLBACK_CONTINUE) or not (SCI_CALLBACK_CANCEL) after the function execution.

A possible implementation of the callback function could simply include the switch statement introduced above,

where arg can be, for example, the connection table:

SISCI API 2 – SISCI Users Guide - Page 49

sci_callback_action_t

local_segment_cb(void* arg,

sci_local_segment_t segment,

sci_segment_cb_reason_t reason,

unsigned int node_id,

unsigned int local_adapter_no)

{

/* convert arg to a pointer to a connection table */

switch (reason) {

case SCI_CB_CONNECT:

/* update the connection table for the segment */

break;

case SCI_CB_DISCONNECT:

/* update the connection table for the segment */

return SCI_CALLBACK_CANCEL;

break;

case SCI_CB_OPERATIONAL:

/* the segment is usable */

break;

case SCI_CB_NOT_OPERATIONAL:

/* the situation may recover */

break;

case SCI_CB_LOST:

/* update the connection table for the segment */

return SCI_CALLBACK_CANCEL;

break;

default:

/* error */

break;

}

return SCI_CALLBACK_CONTINUE;

}

Remote segment events
The same five events related to local memory segments also applies to remote segments, though their meaning is

different. Let us recall their enumeration type sci_segment_cb_reason_t:

typedef enum {

SCI_CB_CONNECT,

SCI_CB_DISCONNECT,

SCI_CB_NOT_OPERATIONAL,

SCI_CB_OPERATIONAL,

SCI_CB_LOST

} sci_segment_cb_reason_t;

Their meaning for a remote segment is:

SCI_CB_CONNECT

An asynchronous connection (see the “Managing remote segment” section on page 16) has

completed successfully.
SCI_CB_DISCONNECT

An asynchronous connection (see the “Managing remote segment” section on page 16) has failed.
SCI_CB_NOT_OPERATIONAL

The route to the exporting node is temporarily unavailable.
SCI_CB_OPERATIONAL

The route to the exporting node is available (again).
SCI_CB_LOST

An unrecoverable situation has occurred on the exporting node.

Asynchronous connection

In the “Connecting to a remote segment” section on page 16, we have seen how to connect to a remote

segment in a synchronous way, that is, we wait until SCIConnectSegment() returns, either because the

connection has completed or because a timeout has expired.

SISCI API 2 – SISCI Users Guide - Page 50

Alternatively, it is possible to only initiate the connection and wait for the completion while doing other things.

This is possible calling SCIConnectSegment() with the flag SCI_FLAG_ASYNCHRONOUS_CONNECT:

sci_remote_segment_t remote_segment;

sci_error_t error;

SCIConnectSegment(..., &segment, ..., SCI_FLAG_ASYNCHRONOUS_CONNECT, &error);

if (error == SCI_ERR_OK) {

/* the handle is valid, but the remote segment

 * is NOT necessarily connected */

} else {

/* manage error */

}

In this case the SCIConnectSegment() returns immediately with a valid handle. Be careful, as a valid handle

does not mean a valid descriptor. If the connection request is satisfied, the descriptor will be validated later, once

the driver has filled all the fields with proper values. If the connection is refused, the descriptor will never

become valid.

In both cases, the driver generates an appropriate event (SCI_CB_CONNECT and SCI_CB_DISCONNECT

respectively) to notify the result to the application, which then has to react accordingly. In particular, in case of

failure it has to release the descriptor, even if invalid, with SCIDisconnectSegment() (see the

“Disconnecting from a remote segment” section on page 17).

Remote segment synchronous event handling
As for a local segment resource, remote segments events can be caught either synchronously, with a wait

function, or asynchronously, enabling the callback mechanism.

Let us start with the synchronous approach:

sci_remote_segment_t segment;

sci_error_t status;

sci_error_t error;

SCIConnectSegment(..., &segment, ...);

reason =

SCIWaitForRemoteSegmentEvent(segment, &status,

SCI_INFINITE_TIMEOUT,

NO_FLAGS, &error);

if (error == SCI_ERR_OK) {

switch (reason) {

case SCI_CB_CONNECT:

/* the previous call to SCIConnectSegment() has succeded;

the handle to the descriptor is now usable */

/* this case makes sense only if SCIConnectSegment() was

called with the flag SCI_FLAG_ASYNCHRONOUS_CONNECT */

break;

case SCI_CB_DISCONNECT:

/* SCISetSegmentUnavailable() has been called

on the exporting node with SCI_FLAG_NOTIFY;

we should clean up and disconnect */

/* clean up */

SCIDisconnectSegment(segment, NO_FLAGS, &error);

break;

case SCI_CB_OPERATIONAL:

/* the connection is established (or re-established);

is usable */

break;

case SCI_CB_NOT_OPERATIONAL:

/* wait for the connection to recover */

break;

case SCI_CB_LOST:

/* the connection is lost, the segment is not usable any more */

break;

default:

/* error */

SISCI API 2 – SISCI Users Guide - Page 51

break;

}

} else {

/* manage error */

}

SCIWaitForRemoteSegmentEvent() fails if the timeout expires (with error set to SCI_ERR_TIMEOUT) or if

the segment has already been disconnected, so that the handle is not valid anymore (error is set to

SCI_ERR_CANCELLED). In case the event is SCI_CB_LOST, it is responsibility of the application to clean things

up, so that resources, for example descriptors, be appropriately released. So the segment, if mapped, has to be

unmapped with SCIUnmapSegment() and then it has to be disconnected with SCIDisconnectSegment().

Remote segment asynchronous event handling
For remote segment events there is also the alternative to catch them asynchronously by specifying an

appropriate callback function in the call to SCIConnectSegment(). Compare the following code with the one

shown in the “Connecting to a remote segment” section on page 16:

sci_desc_t v_dev;

sci_remote_segment_t remote_segment;

sci_error_t error;

void* arg = 0;

SCIInitialize(...);

SCIOpen(&v_dev, ...);

/* possible setting of arg */

SCIConnectSegment(v_dev,

&remote_segment,

RECEIVER_NODE_ID,

RECEIVER_SEG_ID,

ADAPTER_NO,

remote_segment_cb, /* callback function */

arg, /* callback argument */

SCI_INFINITE_TIMEOUT,

SCI_FLAG_USE_CALLBACK, /* enables callback */

&error);

if (error == SCI_ERR_OK) {

/* the remote segment is connected */

} else {

/* manage error */

}

Where remote_segment_cb() has the following prototype:

sci_callback_action_t

remote_segment_cb(void* arg,

sci_remote_segment_t remote_segment,

sci_segment_cb_reason_t reason,

sci_error_t status);

Which corresponds to the type sci_cb_remote_segment_t. In the callback prototype, arg is the same

parameter specified in SCIConnectSegment(). It is defined as a void* so that it can be casted easily to any

other type. arg can for example represent some parameters associated with segment, such as the remote node

and segment identifier.

The other parameters guarantee that the function gets the same information as is available after

SCIWaitForRemoteSegmentEvent().

Note how the value of the parameter flags in SCIConnectSegment() is now SCI_FLAG_USE_CALLBACK.

According to the API specification, the use of this option prevents us from using

SCIWaitForRemoteSegmentEvent().

The return value of a callback is of type sci_callback_action_t which is defined as follows:

SISCI API 2 – SISCI Users Guide - Page 52

typedef enum {

SCI_CALLBACK_CANCEL = 1,

SCI_CALLBACK_CONTINUE

} sci_callback_action_t;

The return value of the callback function tells the driver whether the callback is still active

(SCI_CALLBACK_CONTINUE) or not (SCI_CALLBACK_CANCEL) after the function execution.

A possible implementation of remote_segment_cb() could for example include the switch statement shown

in the previous section:

sci_callback_action_t

remote_segment_cb(void* arg,

sci_remote_sement_t segment,

sci_segment_cb_reason_t reason,

sci_error_t status)

{

switch (reason) {

case SCI_CB_CONNECT:

/* an asynchronous connection, i.e. SCIConnectSegment()

* called with the flag SCI_FLAG_ASYNCHRONOUS_CONNECT, has succeeded

*/

break;

case SCI_CB_DISCONNECT:

/* SCISetSegmentUnavailable() has been called on the exporting node

with SCI_FLAG_NOTIFY - we should clean up and disconnect */

/* clean up */

SCIDisconnectSegment(segment, NO_FLAGS, &error);

break;

case SCI_CB_OPERATIONAL:

/* the connection is established (or re-established);

 * the segment is usable */

break;

case SCI_CB_NOT_OPERATIONAL:

/* wait for the connection to recover */

break;

case SCI_CB_LOST:

/* the connection is lost, the segment is not usable any more */

break;

default:

/* error */

break;

}

return SCI_CALLBACK_CONTINUE;

}

A state machine for a remote segment

The remote segment callback state machine can be found in the Figure 3 – State machine for remote
segment callbacks” below.

SISCI API 2 – SISCI Users Guide - Page 53

Figure 3 – State machine for remote segment callbacks

DMA and callbacks

In the “Waiting for DMA completion” section on page 31 we have explored two ways for checking if the

processing of a DMA queue has completed. One is based on a blocking wait function; the other is based on

polling the state of the queue until it is in a final state. In this section, you will learn how to use a third way,

which consists of a callback mechanism: you declare that a certain function is to be called when the DMA queue

processing has completed. You declare the callback function when you post the queue for processing:

sci_error_t error;

sci_dma_queue_t dma_queue;

void* arg = 0;

SCICreateDMAQueue(..., &dma_queue, ...);

SCIStartDMATransfer(dma_queue,….,dma_queue_cb, arg, SCI_FLAG_USE_CALLBACK,&error);

if (error == SCI_ERR_OK) {

/* queue posted successfully */

} else {

/* manage error */

}

Where dma_queue_cb() has the following prototype:

sci_callback_action_t

dma_queue_cb(void* arg, sci_dma_queue_t dma_queue, sci_error_t status);

Which corresponds to the type sci_cb_dma_t. Notice also, that you must explicitly set

SCI_FLAG_USE_CALLBACK as a flag for the callback function to be considered. Remember that if you use a

callback you are not allowed to use SCIWaitForDMAQueue().

Interrupts and callbacks

In the “Waiting for an interrupt” section on page 38 we have seen that interrupts can be caught synchronously

by calling SCIWaitForInterrupt(). Alternatively, you can specify a function to be called asynchronously

when an interrupt arrives, on creation time.

sci_desc_t v_dev;

sci_local_interrupt_t local_interrupt;

SISCI API 2 – SISCI Users Guide - Page 54

unsigned int interrupt_no;

sci_error_t error;

void* arg = 0;

SCIInitialize(...);

SCIOpen(&v_dev, ...);

/* possible setting of arg */

SCICreateInterrupt(v_dev,

&local_interrupt,

ADAPTER_NO,

interrupt_no,

interrupt_cb,

arg,

SCI_FLAG_USE_CALLBACK,

&error);

if (error == SCI_ERR_OK) {

/* the interrupt is available to remote applications */

} else {

/* manage error */

}

Where interrupt_cb() has the following prototype:

sci_callback_action_t

interrupt_cb(void* arg, sci_local_interrupt_t interrupt, sci_error_t error);

Which corresponds to the type sci_cb_interrupt_t.

Remember that:

• You must pass the SCI_FLAG_USE_CALLBACK for the callback to be considered.

• If you use a callback you are not allowed to use SCIWaitForInterrupt().

Reflective memory – Multicast
Certain types of memory mapped interconnect solutions provide a hardware based multicast environment.

Multicast functionality enables a single write transaction to reach multiple targets. A CPU store, DMA write or

some other device that can do a posted write to the mapped multicast address can typically initiate the

transaction.

Dolphin has extended the SISCI API to support multicast/reflective memory, currently available with the

Dolphin Express DX, IX and PX and MX interconnect family. The multicast functionality is normally only

available when your systems are connected using a network switch (The multicast is normally implemented in

the switch).

The initialization of a multicast segment is very similar to initialization of regular remote segments.

The segment ID is used to specify the reflective memory ID and must be between 0 and the maximum number of

reflective memory segments supported by the hardware (e.g. max of 4 for Dolphin Express IX).

To allocate, prepare or map a segment, the SCI_FLAG_BROADCAST flag must be set. You should use

DIS_BROADCAST_NODEID_GROUP_ALL as nodeId, for remote operations that needs the remote nodeId as

parameter.

The important functionality and parameters are:

nodeId = DIS_BROADCAST_NODEID_GROUP_ALL;

SCICreateSegment(…, SCI_FLAG_BROADCAST, …);

SISCI API 2 – SISCI Users Guide - Page 55

SCIPrepareSegment(…, SCI_FLAG_BROADCAST, …);

SCIConnectSegment(…, nodeId , SCI_FLAG_BROADCAST, …);

More information on multicast
The SISCI software distribution from Dolphin contains several source code examples demonstrating the real use

of the SISCI reflective / Multicast functionality.

More details on reflective memory can be found in a separate white paper that can be downloaded from the from

the whitepaper section on the Dolphin website.

Peer to peer transfers
The SISCI API supports registering of arbitrary physical addresses as SISIC segments and identifying physical

addresses of remote mapped devices.

More information on peer to peer transfers
More details on peer to peer communication can be found in a separate white paper that can be downloaded from

the whitepaper section on the Dolphin web site.

SISCI API 2 – SISCI Users Guide - Page 56

Privileged functions
The SISCI API contains some functions that may cause severe system problems; corrupting data or causing

crashes if used incorrectly.

Registering physical memory as a segment
The SISCI API also allows physical memory, e.g. memory on a PCIe device (FPGA, GPU etc.), to be registered

as a SISCI segment. The requirements are that the user knows the physical address and its size, and that the

memory is always available (main memory needs to be locked down).

If registering a PCI/PCIe device, the user also needs to ensure the local system supports direct PCI Express peer

to peer transfers (the network cards are able to directly access the physical memory device).

The concept is to allocate an “empty” segment – without any memory allocated. This is done by specifying the

flag SCI_FLAG_EMPTY when calling SCICreateSegment() and later on, use the

SCIAttachPhysicalMemory() function to register the physical address.

The following code will demonstrate how to do this:

sci_error_t error;

sci_local_segment_t segment;

sci_ioaddr_t ioa = 0x1234567800000000; /* 64 bit physical address of memory */

SCICreateSegment(… , SCI_FLAG_EMPTY, …); /* initialization */

If (error == SCI_ERR_OK) {

 SCIAttachPhysicalMemory(ioa, NULL, 0, size, segment, 0, &error);

 if(error != SCI_ERR_OK) {

 /* Terminate or handle error */

}

 }

/* from this point we can use it as a regular segment */

Once the physical segment is properly registered and set up, it is managed and used just as a regular SISCI

segment. A full example of how to work with physical segments can be found in the SISCI source code example
rpcia.c

Querying the remote address of a mapped SISCI segment
If you would like to set up a local FPGA, GPU, etc. to access a remote SISCI segment directly, you need to

identify its local physical address. This address will typically reside within the network adapter’s address space

and will only be valid as long as the remote segment is and remains mapped from this system. The following

code can be used to identify this address:

query.subcommand = SCI_Q_REMOTE_SEGMENT_IOADDR;

query.segment = segment;

SCIQuery(SCI_Q_REMOTE_SEGMENT, &query, 0, &error);

if(error == SCI_ERR_OK) {

printf("Remote segment ioaddr = 0x%0*llX\n", 16, query.data.ioaddr);

}

It is up to the programmer to find a good way to propagate this address down to the device that wants to use this

address.

SISCI API 2 – SISCI Users Guide - Page 57

How to write optimized SISCI code
The SISCI API provides a rich and powerful API for deploying applications over a remote memory access

network. This section contains suggestions and ideas for application programmers to optimize performance.

Which one to use depends on the nature of the application and system. Please consider the following:

1. Most of the SISCI API setup and management functions are either communicating with remote systems or

doing local adapter CSR register accesses. These functions should normally not be used in the “application

performance critical inner loop”. Allocating memory segments, connecting to remote segments, creating

interrupts, etc. should ideally be established when the application starts and removed before application exit.

2. Avoid interrupts when not needed. The SISCI API offers a set of functions to create and trigger remote

interrupts. The SISCI driver will use remote memory access internally to trigger a remote interrupt, but the

system interrupt latency and overhead will be added to the time budget.

2.1. Use polling to avoid interrupts: Polling a local SISCI memory address is a very low-cost operation.

The first reference will re-load the local CPU cache; all following poll operations will only reference

the cache until the remote update arrives and the CPU cache is invalidated and fetched. Is it possible to

do some polling between other application tasks?

2.2. Combine polling and interrupts. Poll for a short while before going to sleep – waiting for a remote

interrupt.

2.3. Use remote memory access to inform the remote node that an interrupt is required to wake up the other

process.

2.4. SCICreateInterrupt() should be called once, and not for every loop.

3. Optimized error checking. The SCICheckSequence() operation typically requires 1-2us to complete. The

PCI Express network is a reliable network, and data will not be lost unless there is a real problem – broken

hardware, cable unplugged, switch power down, etc.

3.1. Try to move the SCICheckSequence() out of the communication inner loop - maybe the application

can implement a more relaxed error recovery model?

3.2. Do not use SCICheckSequence() for small messages – implement a memory checksum mechanism

where the sender calculates a checksum that can be verified by the receiver.

4. Use PIO as an alternative to DMA. Transferring small amounts of data using DMA has a lot of overhead

compared to a PIO posted write. Small transfers will in most cases benefit from using PIO. DMA uses less

CPU overhead for large transfers.

4.1. Implement a mixed transport model using PIO for small transfers and DMA for larger transfers.

4.2. If you are doing direct remote writes using pointer arithmetic, try to optimize the size written, send one

8 byte (dword) instead of many chars, etc.

4.3. The use of SCIMemCpy() will ensure optimal performance, especially if large amounts of data are

copied to a remote system. If SCIMemCpy() is not desired, then flush the CPU buffers with

SCICheckSequence(NULL, SCI_FLAG_FLUSH_CPU_BUFFERS_ONLY) or SCIFlush().

If balancing between PIO and DMA is implemented, do not assume that the balance will be kept across

heterogeneous hardware. Thresholds do change with CPU and IO chipsets.

5. Implement a way to benchmark your transport and compare the results with the standard Dolphin SISCI

benchmarks found in the software distribution (scibench2, scipp, intr_bench , dma_bench and

reflective_bench). Review the code of the Dolphin benchmarks if you do not reach similar performance.

5.1. Request support from Dolphin if you do not reach your expected results.

Using Dolphin Express PX hardware, data can be transmitted to remote memory in 0.54us. Message passing at

the SISCI API can be implemented using the above listed techniques in 1us latency for 1 byte.

SISCI API 2 – SISCI Users Guide - Page 58

SISCI API changes
Dolphin strives to keep its SISCI API implementation stable to minimize changes to customer applications.

Hardware dependent features
Various types of interconnect hardware may introduce special features that only are available with that particular

hardware. These features are typically introduced as special flag options to existing SISCI API functions. These

flag options are documented as hardware dependent, and may not be available on future hardware products.

SISCI API versions
Detailed changes to the SISCI API implementation, e.g. new hardware dependent flags, can be found in the file

SISCI_API_UPDATE.txt

The SISCI header file sisci_version.h includes macro definitions that can be used to write code to handle various

versions of the SISCI API implementation.

SISCI API 2 – SISCI Users Guide - Page 59

Availability
Dolphin has been providing the SISCI API for all of its Dolphin Express interconnect solutions. Support for SCI

networks was introduced in 1998. Support for the Dolphin Express DX was added in 2006. Support for Dolphin

Express IX was added in 2010. Support for Intel NTB and Dolphin Express PX was added in 2015. Support for

Microsemi Switchtec PFX was added in 2017.

Supported operating systems
SISCI support was introduced on Solaris 2.5.1, LynxOS 3.1, VxWorks 5.5, Windows NT 4.0 and Linux 2.0.

SISCI is currently available for Windows XP – Windows 10 32 and 64 bits, RTX2013 - RTX2016 - 32 and 64

bits, Linux 2.6, 3.x and 4.x 32 and 64 bits Intel, ARM32, and ARM64. VxWorks x86_64 SMP 6.9 and VxWorks

7.0

Please consult the appropriate software release note for details on combinations of supported system

architectures, operating systems and versions.

Support for 3rd party OEM hardware
The SISCI API is available for the following PCIe chipsets:

• Logan, Northstar and Phoenix NTB PCI Express Gen2 and Gen3 chipsets from IDT.

• Sirius, Draco2, Capella 1 NTB PCI Express Gen2 and Gen3 chips from Broadcom (PLX/Avago).

• PFX Switchtec from Microsemi

• Intel NTB

Please contact Dolphin if you are interested in running SISCI on your custom PCI Express design.

SISCI API 2 – SISCI Users Guide - Page 60

More information
Please visit http://dolphinics.com/products/embedded-sisci-developers-kit.html for an overview of available

resources.

The SISCI functional specification can be found at http://ww.dolphinics.no/download/SISCI_DOC/index.html

Please contact Dolphin support on pci-support@dolphinics.com if you have any questions on using the SISCI

API.

http://dolphinics.com/products/embedded-sisci-developers-kit.html
http://ww.dolphinics.no/download/SISCI_DOC/index.html
mailto:pci-support@dolphinics.com

